Albrecht Simone C, Sobotta Mirko C, Bausewein Daniela, Aller Isabel, Hell Rüdiger, Dick Tobias P, Meyer Andreas J
1Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
J Biomol Screen. 2014 Mar;19(3):379-86. doi: 10.1177/1087057113499634. Epub 2013 Aug 16.
The development of genetically encoded redox biosensors has paved the way toward chemically specific, quantitative, dynamic, and compartment-specific redox measurements in cells and organisms. In particular, redox-sensitive green fluorescent proteins (roGFPs) have attracted major interest as tools to monitor biological redox changes in real time and in vivo. Most recently, the engineering of a redox relay that combines glutaredoxin (Grx) with roGFP2 as a translational fusion (Grx1-roGFP2) led to a biosensor for the glutathione redox potential (EGSH ). The expression of this probe in mitochondria is of particular interest as mitochondria are the major source of oxidants, and their redox status is closely connected to cell fate decisions. While Grx1-roGFP2 can be expressed in mammalian mitochondria, it fails to enter mitochondria in various nonmammalian model organisms. Here we report that inversion of domain order from Grx1-roGFP2 to roGFP2-Grx1 yields a biosensor with perfect mitochondrial targeting while fully maintaining its biosensor capabilities. The redesigned probe thus allows extending in vivo observations of mitochondrial redox homeostasis to important nonmammalian model organisms, particularly plants and insects.
基因编码氧化还原生物传感器的发展为在细胞和生物体内进行化学特异性、定量、动态和特定区室的氧化还原测量铺平了道路。特别是,氧化还原敏感型绿色荧光蛋白(roGFPs)作为实时和体内监测生物氧化还原变化的工具引起了广泛关注。最近,将谷氧还蛋白(Grx)与roGFP2作为翻译融合体(Grx1-roGFP2)相结合的氧化还原中继工程产生了一种用于谷胱甘肽氧化还原电位(EGSH)的生物传感器。该探针在线粒体中的表达特别受关注,因为线粒体是氧化剂的主要来源,其氧化还原状态与细胞命运决定密切相关。虽然Grx1-roGFP2可以在哺乳动物线粒体中表达,但它无法进入各种非哺乳动物模式生物的线粒体。在此我们报告,将结构域顺序从Grx1-roGFP2颠倒为roGFP2-Grx1会产生一种具有完美线粒体靶向性的生物传感器,同时完全保持其生物传感器功能。因此,重新设计的探针能够将线粒体氧化还原稳态的体内观察扩展到重要的非哺乳动物模式生物,特别是植物和昆虫。