Suppr超能文献

无序蛋白质和构象噪声:在癌症中的意义。

Intrinsically disordered proteins and conformational noise: implications in cancer.

机构信息

Division of Bioengineering, California Institute of Technology; Pasadena, CA USA.

出版信息

Cell Cycle. 2013 Jan 1;12(1):26-31. doi: 10.4161/cc.23178. Epub 2012 Dec 19.

Abstract

Intrinsically disordered proteins, IDPs, are proteins that lack a rigid 3D structure under physiological conditions, at least in vitro. Despite the lack of structure, IDPs play important roles in biological processes and transition from disorder to order upon binding to their targets. With multiple conformational states and rapid conformational dynamics, they engage in myriad and often "promiscuous" interactions. These stochastic interactions between IDPs and their partners, defined here as conformational noise, is an inherent characteristic of IDP interactions. The collective effect of conformational noise is an ensemble of protein network configurations, from which the most suitable can be explored in response to perturbations, conferring protein networks with remarkable flexibility and resilience. Moreover, the ubiquitous presence of IDPs as transcriptional factors and, more generally, as hubs in protein networks, is indicative of their role in propagation of transcriptional (genetic) noise. As effectors of transcriptional and conformational noise, IDPs rewire protein networks and unmask latent interactions in response to perturbations. Thus, noise-driven activation of latent pathways could underlie state-switching events such as cellular transformation in cancer. To test this hypothesis, we created a model of a protein network with the topological characteristics of a cancer protein network and tested its response to a perturbation in presence of IDP hubs and conformational noise. Because numerous IDPs are found to be epigenetic modifiers and chromatin remodelers, we hypothesize that they could further channel noise into stable, heritable genotypic changes.

摘要

无规卷曲蛋白质(IDPs)是指在生理条件下,至少在体外缺乏刚性 3D 结构的蛋白质。尽管缺乏结构,但 IDPs 在生物过程中发挥着重要作用,并在与靶标结合后从无序转变为有序。由于具有多种构象状态和快速构象动力学,它们会进行无数种且通常是“混杂”的相互作用。IDPs 与其伴侣之间的这种随机相互作用,在这里被定义为构象噪声,是 IDP 相互作用的固有特征。构象噪声的集体效应是蛋白质网络构象的集合,从中可以探索最适合的构象来响应扰动,从而赋予蛋白质网络显著的灵活性和弹性。此外,IDPs 作为转录因子普遍存在,更普遍地作为蛋白质网络中的枢纽,这表明它们在转录(遗传)噪声的传播中发挥作用。作为转录和构象噪声的效应物,IDPs 会重新布线蛋白质网络,并在响应扰动时揭示潜在的相互作用。因此,潜在途径的噪声驱动激活可能是癌症中细胞转化等状态转换事件的基础。为了验证这一假设,我们创建了一个具有癌症蛋白质网络拓扑特征的蛋白质网络模型,并在存在 IDP 枢纽和构象噪声的情况下测试了它对扰动的响应。由于许多 IDPs 被发现是表观遗传修饰物和染色质重塑剂,我们假设它们可以进一步将噪声引导到稳定的、可遗传的基因型变化中。

相似文献

1
Intrinsically disordered proteins and conformational noise: implications in cancer.
Cell Cycle. 2013 Jan 1;12(1):26-31. doi: 10.4161/cc.23178. Epub 2012 Dec 19.
2
Protein conformational dynamics and phenotypic switching.
Biophys Rev. 2021 Nov 27;13(6):1127-1138. doi: 10.1007/s12551-021-00858-x. eCollection 2021 Dec.
3
Intrinsically disordered proteins and phenotypic switching: Implications in cancer.
Prog Mol Biol Transl Sci. 2019;166:63-84. doi: 10.1016/bs.pmbts.2019.03.013. Epub 2019 Apr 11.
4
Intrinsically disordered proteins may escape unwanted interactions via functional misfolding.
Biochim Biophys Acta. 2011 May;1814(5):693-712. doi: 10.1016/j.bbapap.2011.03.010. Epub 2011 Mar 31.
5
Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
Mol Biosyst. 2012 Jan;8(1):198-209. doi: 10.1039/c1mb05156c. Epub 2011 Jul 18.
6
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
7
Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9614-9. doi: 10.1073/pnas.1512799112. Epub 2015 Jul 20.
8
A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
J Biomol NMR. 2016 Dec;66(4):243-257. doi: 10.1007/s10858-016-0073-6. Epub 2016 Nov 14.
9
Evolutionarily conserved network properties of intrinsically disordered proteins.
PLoS One. 2015 May 14;10(5):e0126729. doi: 10.1371/journal.pone.0126729. eCollection 2015.
10
Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery.
Chembiochem. 2012 May 7;13(7):930-50. doi: 10.1002/cbic.201200093. Epub 2012 Apr 13.

引用本文的文献

1
Energy Landscapes and Structural Plasticity of Intrinsically Disordered Histones.
J Chem Inf Model. 2025 Aug 25;65(16):8679-8687. doi: 10.1021/acs.jcim.4c02269. Epub 2025 Aug 6.
2
Conformational dynamics and multimodal interaction of Paxillin with the focal adhesion targeting domain.
Sci Adv. 2025 Jun 20;11(25):eadt9936. doi: 10.1126/sciadv.adt9936. Epub 2025 Jun 18.
3
Evolving concepts of the protein universe.
iScience. 2025 Feb 13;28(3):112012. doi: 10.1016/j.isci.2025.112012. eCollection 2025 Mar 21.
4
Conformational dynamics and multi-modal interaction of Paxillin with the Focal Adhesion Targeting Domain.
bioRxiv. 2025 Jan 2:2025.01.01.630265. doi: 10.1101/2025.01.01.630265.
5
Phenotypic Plasticity and Cancer: A System Biology Perspective.
J Clin Med. 2024 Jul 23;13(15):4302. doi: 10.3390/jcm13154302.
6
Leveraging Cancer Phenotypic Plasticity for Novel Treatment Strategies.
J Clin Med. 2024 Jun 5;13(11):3337. doi: 10.3390/jcm13113337.
7
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
8
Comprehending phenotypic plasticity in cancer and evolution.
iScience. 2024 Mar 5;27(3):109308. doi: 10.1016/j.isci.2024.109308. eCollection 2024 Mar 15.
9

本文引用的文献

1
Widespread plasticity in CTCF occupancy linked to DNA methylation.
Genome Res. 2012 Sep;22(9):1680-8. doi: 10.1101/gr.136101.111.
2
Tissue-specific alternative splicing remodels protein-protein interaction networks.
Mol Cell. 2012 Jun 29;46(6):884-92. doi: 10.1016/j.molcel.2012.05.037.
4
MobiDB: a comprehensive database of intrinsic protein disorder annotations.
Bioinformatics. 2012 Aug 1;28(15):2080-1. doi: 10.1093/bioinformatics/bts327. Epub 2012 Jun 1.
5
A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):E1063-71. doi: 10.1073/pnas.1118678109. Epub 2012 Apr 18.
6
Using gene expression noise to understand gene regulation.
Science. 2012 Apr 13;336(6078):183-7. doi: 10.1126/science.1216379.
7
Noise in cellular signaling pathways: causes and effects.
Trends Biochem Sci. 2012 May;37(5):173-8. doi: 10.1016/j.tibs.2012.01.001. Epub 2012 Feb 15.
8
CHD chromatin remodelers and the transcription cycle.
Transcription. 2011 Nov-Dec;2(6):244-53. doi: 10.4161/trns.2.6.17840. Epub 2011 Nov 1.
9
A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells.
Cell. 2011 Sep 30;147(1):120-31. doi: 10.1016/j.cell.2011.08.038.
10
A majority of the cancer/testis antigens are intrinsically disordered proteins.
J Cell Biochem. 2011 Nov;112(11):3256-67. doi: 10.1002/jcb.23252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验