Zhu Qian, Jiang Guoqian, Chute Christopher G
Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
J Biomed Semantics. 2012 Dec 20;3(1):16. doi: 10.1186/2041-1480-3-16.
Structured Product Labeling (SPL) is a document markup standard approved by Health Level Seven (HL7) and adopted by United States Food and Drug Administration (FDA) as a mechanism for exchanging drug product information. The SPL drug labels contain rich information about FDA approved clinical drugs. However, the lack of linkage to standard drug ontologies hinders their meaningful use. NDF-RT (National Drug File Reference Terminology) and NLM RxNorm as standard drug ontology were used to standardize and profile the product labels.
In this paper, we present a framework that intends to map SPL drug labels with existing drug ontologies: NDF-RT and RxNorm. We also applied existing categorical annotations from the drug ontologies to classify SPL drug labels into corresponding classes. We established the classification and relevant linkage for SPL drug labels using the following three approaches. First, we retrieved NDF-RT categorical information from the External Pharmacologic Class (EPC) indexing SPLs. Second, we used the RxNorm and NDF-RT mappings to classify and link SPLs with NDF-RT categories. Third, we profiled SPLs using RxNorm term type information. In the implementation process, we employed a Semantic Web technology framework, in which we stored the data sets from NDF-RT and SPLs into a RDF triple store, and executed SPARQL queries to retrieve data from customized SPARQL endpoints. Meanwhile, we imported RxNorm data into MySQL relational database.
In total, 96.0% SPL drug labels were mapped with NDF-RT categories whereas 97.0% SPL drug labels are linked to RxNorm codes. We found that the majority of SPL drug labels are mapped to chemical ingredient concepts in both drug ontologies whereas a relatively small portion of SPL drug labels are mapped to clinical drug concepts.
The profiling outcomes produced by this study would provide useful insights on meaningful use of FDA SPL drug labels in clinical applications through standard drug ontologies such as NDF-RT and RxNorm.
结构化产品标签(SPL)是一种由卫生信息标准组织(HL7)批准、美国食品药品监督管理局(FDA)采用的文档标记标准,作为交换药品信息的一种机制。SPL药品标签包含有关FDA批准的临床药物的丰富信息。然而,由于缺乏与标准药物本体的关联,阻碍了它们的有效利用。国家药品文件参考术语(NDF-RT)和美国国立医学图书馆的RxNorm作为标准药物本体,被用于对产品标签进行标准化和剖析。
在本文中,我们提出了一个旨在将SPL药品标签与现有药物本体(NDF-RT和RxNorm)进行映射的框架。我们还应用了来自药物本体的现有分类注释,将SPL药品标签分类到相应的类别中。我们使用以下三种方法为SPL药品标签建立分类和相关链接。首先,我们从索引SPL的外部药理类别(EPC)中检索NDF-RT分类信息。其次,我们使用RxNorm和NDF-RT映射将SPL与NDF-RT类别进行分类和链接。第三,我们使用RxNorm术语类型信息对SPL进行剖析。在实施过程中,我们采用了语义网技术框架,将来自NDF-RT和SPL的数据集存储到一个RDF三元组存储中,并执行SPARQL查询以从定制的SPARQL端点检索数据。同时,我们将RxNorm数据导入MySQL关系数据库。
总共96.0%的SPL药品标签与NDF-RT类别进行了映射,而97.0%的SPL药品标签与RxNorm代码相关联。我们发现,大多数SPL药品标签在这两种药物本体中都被映射到化学成分概念,而相对较小部分的SPL药品标签被映射到临床药物概念。
本研究产生的剖析结果将通过NDF-RT和RxNorm等标准药物本体,为FDA SPL药品标签在临床应用中的有效利用提供有用的见解。