Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
J Appl Biomater Funct Mater. 2012;10(3):293-301. doi: 10.5301/JABFM.2012.10432.
The hydrolytic degradation behavior of degradable aliphatic polyester-based polymers is strongly influenced by the up-take or transport of water into the polymer matrix and also the hydrolysis rate of ester bonds.
We examined the volumetric swelling behavior of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based polyurethanes (PLGA-PU) with water contents of 0 wt%, 2 wt% and 7 wt% water at 310 K using a molecular modeling approach. Polymer systems with a number average molecular weight of Mn = 10,126 g∙mol(-1) were constructed from PLGA with a lactide content of 67 mol%, whereby PLGA-PU systems were composed of five PLGA segments with Mn = 2052 g∙mol(-1), which were connected via urethane linkers originated from 2,2,4-trimethyl hexamethylene-1,6-diisocyanate (TMDI), hexamethyl-1,6-diisocyanate (HDI), or L-lysine-1,6-diisocyanate (LDI).
The calculated densities of the dry PLGA-PU systems were found to be lower than for pure PLGA. The obtained volumetric swelling of the PLGA-PU was depending on the type of urethane linker, whereby all swollen PLGA-PUs contained larger free volume distribution compared to pure PLGA. The mean square displacement curves for dry PLGA and PLGA-PUs showed that urethane linker units reduce the mobility of the polymer chains, while an increase in backbone atoms mobility was found, when water was added to these systems. Consequently, an increased water uptake of PLGA-PU matrices combined with a higher mobility of the chain segments should result in an accelerated hydrolytic chain scission rate in comparison to PLGA.
It can be anticipated that the incorporation of urethane linkers might be a helpful tool to adjust the degradation behavior of polyesters.
可生物降解脂肪族聚酯基聚合物的水解降解行为受水进入聚合物基体的吸收或传输以及酯键的水解速率的强烈影响。
我们使用分子建模方法研究了含水量为 0wt%、2wt%和 7wt%的聚[(rac-丙交酯)-共-乙交酯](PLGA)和基于 PLGA 的聚氨酯(PLGA-PU)在 310K 时的体积溶胀行为。聚合物系统的数均分子量 Mn=10126g·mol-1 由丙交酯含量为 67mol%的 PLGA 构建而成,其中 PLGA-PU 系统由 5 个 Mn=2052g·mol-1 的 PLGA 片段组成,这些片段通过源自 2,2,4-三甲基六亚甲基-1,6-二异氰酸酯(TMDI)、六亚甲基-1,6-二异氰酸酯(HDI)或 L-赖氨酸-1,6-二异氰酸酯(LDI)的氨酯键连接。
发现干燥的 PLGA-PU 系统的计算密度低于纯 PLGA。PLGA-PU 的体积溶胀取决于氨酯键的类型,所有溶胀的 PLGA-PU 都比纯 PLGA 具有更大的自由体积分布。干燥的 PLGA 和 PLGA-PU 的均方位移曲线表明,氨酯键单元降低了聚合物链的流动性,而当向这些系统中添加水时,发现链段的流动性增加。因此,PLGA-PU 基质的吸水率增加以及链段的流动性增加,应该会导致水解链断裂速率加快,与 PLGA 相比。
可以预期,引入氨酯键可能是调整聚酯降解行为的有用工具。