Mathew Simi, Baudis Stefan, Neffe Axel T, Behl Marc, Wischke Christian, Lendlein Andreas
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14153 Teltow, Germany.
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14153 Teltow, Germany.
Eur J Pharm Biopharm. 2015 Sep;95(Pt A):18-26. doi: 10.1016/j.ejpb.2015.03.025. Epub 2015 Mar 28.
In this study, the effect of three aliphatic diisocyanate linkers, L-lysine diisocyanate ethyl ester (LDI), hexamethylene diisocyanate (HDI), and racemic 2,2,4-/2,4,4-trimethyl hexamethylene diisocyanate (TMDI), on the degradation of oligo[(rac-lactide)-co-glycolide] (64:36 mol%) based polyester urethanes (PEU) was examined. Samples were characterized for their molecular weight, mass loss, water uptake, sequence structure, and thermal and mechanical properties. Compared to non-segmented PLGA, the PEU showed higher water uptake and generally degraded faster. Interestingly, the rate of degradation was not directly correlating with the hydrophilicity of the diisocyanate moieties; instead, competing intra-/intermolecular hydrogen bonds in between urethane moieties appear to substantially decrease the rate of degradation for LDI-derived PEU. By comparing microparticles (μm) and films (mm) as matrices of different dimensions, it was shown that autocatalysis remains a contributor to degradation of the larger-sized PEU matrices as it is typical for non-segmented lactide/glycolide copolymers. The shown capacity of lactide/glycolide-based multiblock copolymers to degrade faster than PLGA and exhibit improved elastic properties could be of interest for medical implants and drug release systems.
在本研究中,考察了三种脂肪族二异氰酸酯连接剂,即L-赖氨酸二异氰酸酯乙酯(LDI)、六亚甲基二异氰酸酯(HDI)和外消旋2,2,4-/2,4,4-三甲基六亚甲基二异氰酸酯(TMDI)对基于聚(丙交酯-共-乙交酯)(64:36摩尔%)的聚酯型聚氨酯(PEU)降解的影响。对样品的分子量、质量损失、吸水率、序列结构以及热性能和力学性能进行了表征。与非嵌段聚乳酸-乙醇酸共聚物(PLGA)相比,PEU表现出更高的吸水率,且通常降解更快。有趣的是,降解速率与二异氰酸酯部分的亲水性没有直接关联;相反,聚氨酯部分之间相互竞争的分子内/分子间氢键似乎显著降低了LDI衍生的PEU的降解速率。通过比较作为不同尺寸基质的微粒(μm)和薄膜(mm),结果表明,自催化仍然是较大尺寸PEU基质降解的一个因素,这与非嵌段丙交酯/乙交酯共聚物的典型情况相同。基于丙交酯/乙交酯的多嵌段共聚物比PLGA降解更快且表现出改善的弹性性能,这一特性可能对医疗植入物和药物释放系统具有吸引力。