Castella François, Madec Sten
Université de Rennes 1, UMR CNRS 6625 Irmar, Campus de Beaulieu, 35042 , Rennes Cedex, France,
J Math Biol. 2014 Jan;68(1-2):377-415. doi: 10.1007/s00285-012-0633-7. Epub 2012 Dec 22.
We study the competition of two species for a single resource in a chemostat. In the simplest space-homogeneous situation, it is known that only one species survives, namely the best competitor. In order to exhibit coexistence phenomena, where the two competitors are able to survive, we consider a space dependent situation: we assume that the two species and the resource follow a diffusion process in space, on top of the competition process. Besides, and in order to consider the most general case, we assume each population is associated with a distinct diffusion constant. This is a key difficulty in our analysis: the specific (and classical) case where all diffusion constants are equal, leads to a particular conservation law, which in turn allows to eliminate the resource in the equations, a fact that considerably simplifies the analysis and the qualitative phenomena. Using the global bifurcation theory, we prove that the underlying 2-species, stationary, diffusive, chemostat-like model, does possess coexistence solutions, where both species survive. On top of that, we identify the domain, in the space of the relevant bifurcation parameters, for which the system does have coexistence solutions.
我们研究了恒化器中两种物种对单一资源的竞争。在最简单的空间均匀情况下,已知只有一个物种能够存活,即最佳竞争者。为了展现共存现象,即两个竞争者都能存活,我们考虑一种空间依赖情况:我们假设在竞争过程之上,两种物种和资源在空间中遵循扩散过程。此外,为了考虑最一般的情况,我们假设每个种群都与一个不同的扩散常数相关联。这是我们分析中的一个关键难点:所有扩散常数都相等的特定(且经典)情况会导致一个特定的守恒定律,这反过来又使得能够在方程中消去资源,这一事实极大地简化了分析和定性现象。利用全局分歧理论,我们证明了潜在的两物种、稳态、扩散、类似恒化器的模型确实存在共存解,即两种物种都能存活。除此之外,我们在相关分歧参数空间中确定了系统具有共存解的区域。