Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA.
J Bacteriol. 2013 Mar;195(5):990-1004. doi: 10.1128/JB.01959-12. Epub 2012 Dec 21.
Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among Desulfovibrio species suggest considerable variation in the biochemical basis of syntrophy. In this study, comparative transcriptional and mutant analyses of Desulfovibrio alaskensis strain G20 and Desulfovibrio vulgaris strain Hildenborough growing syntrophically with Methanococcus maripaludis on lactate were used to develop new and revised models for their alternative electron transfer and energy conservation systems. Lactate oxidation by strain G20 generates a reduced thiol-disulfide redox pair(s) and ferredoxin that are energetically coupled to H(+)/CO(2) reduction by periplasmic formate dehydrogenase and hydrogenase via a flavin-based reverse electron bifurcation process (electron confurcation) and a menaquinone (MQ) redox loop-mediated reverse electron flow involving the membrane-bound Qmo and Qrc complexes. In contrast, strain Hildenborough uses a larger number of cytoplasmic and periplasmic proteins linked in three intertwining pathways to couple H(+) reduction to lactate oxidation. The faster growth of strain G20 in coculture is associated with a kinetic advantage conferred by the Qmo-MQ-Qrc loop as an electron transfer system that permits higher lactate oxidation rates under elevated hydrogen levels (thereby enhancing methanogenic growth) and use of formate as the main electron-exchange mediator (>70% electron flux), as opposed to the primarily hydrogen-based exchange by strain Hildenborough. This study further demonstrates the absence of a conserved gene core in Desulfovibrio that would determine the ability for a syntrophic lifestyle.
在缺氧环境中,有机质的矿化依赖于产氢体和耗氢体之间通过种间电子传递的协同活动,这些协同体可能包括硫酸盐还原菌(例如脱硫弧菌)。脱硫弧菌属种间代谢中涉及的生理学差异和各种基因库表明,协同作用的生化基础存在很大差异。在这项研究中,通过比较转录和突变分析,研究了与产甲烷菌 Methanococcus maripaludis 共生生长的脱硫弧菌 Desulfovibrio alaskensis 菌株 G20 和脱硫弧菌 Desulfovibrio vulgaris 菌株 Hildenborough,以开发用于其替代电子传递和能量守恒系统的新模型和修订模型。G20 菌株通过氧化乳酸产生还原型硫醇-二硫键对和铁氧还蛋白,该对通过黄素依赖性反向电子分支过程(电子分岔)和涉及膜结合 Qmo 和 Qrc 复合物的menaquinone(MQ)氧化还原环介导的反向电子流,与周质甲酸脱氢酶和氢化酶一起将 H(+) / CO2 还原与能量偶联。相比之下,Hildenborough 菌株使用更多的细胞质和周质蛋白,通过三种交织的途径连接,将 H(+) 还原与乳酸氧化偶联。在共培养物中,G20 菌株的生长速度更快,这与其 Qmo-MQ-Qrc 环作为电子传递系统有关,该系统允许在较高的氢气水平下(从而增强产甲烷生长)和使用甲酸盐作为主要电子交换介质(> 70%的电子通量)时,提高乳酸氧化速率,而不是主要依赖于 Hildenborough 菌株的基于氢的交换。这项研究进一步表明,脱硫弧菌中不存在决定共生生活能力的保守基因核心。