Suppr超能文献

作为混合价半乳糖氧化酶模型的salen型配体苯氧基自由基配合物的最新进展。

Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models.

作者信息

Lyons Christopher T, Stack T Daniel P

机构信息

Department of Chemistry, Stanford University, Sanford, CA 94305, United States.

出版信息

Coord Chem Rev. 2013 Jan 15;257(2):528-540. doi: 10.1016/j.ccr.2012.06.003.

Abstract

The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GO(ox)) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GO(ox), one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GO(ox).

摘要

金属酶位点中氧化还原活性过渡金属离子与氧化还原活性配体之间的相互作用是一个备受研究关注的领域。半乳糖氧化酶(GO)就是典型的例子,它通过两个单电子辅因子——一个铜原子和一个半胱氨酸修饰的酪氨酸残基,催化伯醇有氧氧化为醛。通过包括金属 - 水杨醛酚氧基自由基配合物在内的小分子类似物,对酶的氧化形式(GO(ox))的电子结构进行了广泛研究。与GO(ox)类似,单电子氧化的金属 - 水杨醛配合物是混合价态物种,其中主要具有酚盐和酚氧基π特征的分子轨道(MOs)作为通过与金属d轨道混合而桥连的氧化还原活性中心。使用各种光谱、电化学和理论技术对这些奇电子物种中的电子分布进行详细评估,使人们对GO(ox)的电子结构有了深入了解。

相似文献

引用本文的文献

6
Room-Temperature Cu(II) Radical-Triggered Alkyne C-H Activation.室温下铜(II)自由基引发的炔烃碳氢键活化
JACS Au. 2021 Oct 6;1(11):1937-1948. doi: 10.1021/jacsau.1c00310. eCollection 2021 Nov 22.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验