Suppr超能文献

烟酰胺给药不会增加小鼠的血小板水平。

Administration of nicotinamide does not increase platelet levels in mice.

机构信息

Chemical and Biological Engineering Department, Northwestern University, Evanston, IL 60208, USA.

出版信息

Blood Cells Mol Dis. 2013 Mar;50(3):171-6. doi: 10.1016/j.bcmd.2012.11.007. Epub 2012 Dec 21.

Abstract

Elucidating ways to enhance megakaryopoiesis in vivo would have therapeutic applications for thrombocytopenia and transfusion medicine. Nicotinamide has been shown to enhance endomitosis in megakaryocytes cultured in vitro, suggesting that it may be beneficial for the production of platelets in culture. We hypothesized that regular injections of nicotinamide in mice would also increase platelets in vivo. However, we found that platelet counts were reduced by about 25% with daily injections of nicotinamide. Altering the schedule, duration, or nicotinamide dose did not improve platelet production. Consistent with lower platelet levels, nicotinamide also tended to decrease megakaryocyte frequency in sternum and spleen sections, as well as colony formation in vitro by bone marrow progenitor cells. However, there was no effect on the fraction or ploidy of CD41(+) cells harvested from bone marrow. Together, our results suggest that, although nicotinamide increases polyploidization of megakaryocytes in culture, it does not have translatable effects in vivo.

摘要

阐明在体内增强巨核细胞生成的方法将对血小板减少症和输血医学具有治疗应用价值。烟酰胺已被证明可增强体外培养的巨核细胞中的核内有丝分裂,这表明它可能有益于培养中的血小板生成。我们假设在小鼠中定期注射烟酰胺也会增加体内的血小板。然而,我们发现每天注射烟酰胺会使血小板计数降低约 25%。改变方案、持续时间或烟酰胺剂量并不能改善血小板生成。与较低的血小板水平一致,烟酰胺也倾向于降低胸骨和脾脏切片中的巨核细胞频率,以及骨髓祖细胞在体外形成集落。然而,对从骨髓中收获的 CD41(+)细胞的分数或倍性没有影响。总之,我们的结果表明,尽管烟酰胺可增加巨核细胞在培养中的多倍性,但它在体内没有可转化的作用。

相似文献

1
Administration of nicotinamide does not increase platelet levels in mice.
Blood Cells Mol Dis. 2013 Mar;50(3):171-6. doi: 10.1016/j.bcmd.2012.11.007. Epub 2012 Dec 21.
2
The effect of decitabine on megakaryocyte maturation and platelet release.
Thromb Haemost. 2011 Aug;106(2):337-43. doi: 10.1160/TH10-11-0744. Epub 2011 Jun 28.
3
4
Hypercholesterolemia impairs megakaryopoiesis and platelet production in scavenger receptor BI knockout mice.
Atherosclerosis. 2019 Mar;282:176-182. doi: 10.1016/j.atherosclerosis.2018.09.019. Epub 2018 Sep 22.
5
Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production.
Tissue Eng Part A. 2013 Apr;19(7-8):998-1014. doi: 10.1089/ten.TEA.2011.0111. Epub 2013 Jan 14.
7
Rapamycin and bafilomycin A1 alter autophagy and megakaryopoiesis.
Platelets. 2017 Jan;28(1):82-89. doi: 10.1080/09537104.2016.1204436. Epub 2016 Aug 18.
8
Humanized VB22B minibody for human Mpl stimulates human megakaryopoiesis but does not enhance platelet aggregation.
Exp Hematol. 2011 Aug;39(8):829-36. doi: 10.1016/j.exphem.2011.05.001. Epub 2011 May 7.
9
Stimulation of thrombopoiesis in mice by fibroblast growth factor 9.
Growth Factors. 1995;12(3):179-90. doi: 10.3109/08977199509036878.
10
Bortezomib induces thrombocytopenia by the inhibition of proplatelet formation of megakaryocytes.
Eur J Haematol. 2014 Oct;93(4):290-6. doi: 10.1111/ejh.12342. Epub 2014 May 16.

引用本文的文献

3
NAD homeostasis in health and disease.
Nat Metab. 2020 Jan;2(1):9-31. doi: 10.1038/s42255-019-0161-5. Epub 2020 Jan 20.
4
The incredible journey: From megakaryocyte development to platelet formation.
J Cell Biol. 2013 Jun 10;201(6):785-96. doi: 10.1083/jcb.201304054.

本文引用的文献

1
VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis.
Blood. 2012 Aug 30;120(9):1899-907. doi: 10.1182/blood-2011-09-376657. Epub 2012 Jul 13.
2
miRNAs can increase the efficiency of ex vivo platelet generation.
Ann Hematol. 2012 Nov;91(11):1673-84. doi: 10.1007/s00277-012-1517-z. Epub 2012 Jul 5.
3
Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis.
Transfusion. 2012 Nov;52(11):2406-13. doi: 10.1111/j.1537-2995.2012.03711.x. Epub 2012 May 21.
4
New thrombopoietin receptor agonists for platelet disorders.
Drugs Today (Barc). 2012 Apr;48(4):293-301. doi: 10.1358/dot.2012.48.4.1740505.
5
Single-cell level analysis of megakaryocyte growth and development.
Differentiation. 2012 Apr;83(4):200-9. doi: 10.1016/j.diff.2011.12.003. Epub 2012 Mar 2.
7
Role of tumor suppressor p53 in megakaryopoiesis and platelet function.
Exp Hematol. 2012 Feb;40(2):131-42.e4. doi: 10.1016/j.exphem.2011.10.006. Epub 2011 Oct 21.
8
Preliminary clinical findings on NEUMUNE as a potential treatment for acute radiation syndrome.
J Radiol Prot. 2010 Dec;30(4):687-98. doi: 10.1088/0952-4746/30/4/004. Epub 2010 Dec 8.
9
Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD+ levels and SIRT inhibition.
Exp Hematol. 2009 Nov;37(11):1340-1352.e3. doi: 10.1016/j.exphem.2009.08.004. Epub 2009 Aug 26.
10
Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling.
Blood. 2008 Oct 15;112(8):3164-74. doi: 10.1182/blood-2008-03-144956. Epub 2008 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验