Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):600-5. doi: 10.1073/pnas.1220813110. Epub 2012 Dec 24.
PRDM9 plays a key role in specifying meiotic recombination hotspot locations in humans and mice via recognition of hotspot sequence motifs by a variable tandem-repeat zinc finger domain in the protein. We now explore germ-line instability of this domain in humans. We show that repeat turnover is driven by mitotic and meiotic mutation pathways, the latter frequently resulting in substantial remodeling of zinc fingers. Turnover dynamics predict frequent allele switches in populations with correspondingly fast changes of the recombination landscape, fully consistent with the known rapid evolution of hotspot locations. We found variation in meiotic instability between men that correlated with PRDM9 status. One particular "destabilizer" variant caused hyperinstability not only of itself but also of otherwise-stable alleles in heterozygotes. PRDM9 protein thus appears to regulate the instability of its own coding sequence. However, destabilizer variants are strongly self-limiting in populations and probably have little impact on the evolution of the recombination landscape.
PRDM9 通过其蛋白中可变串联重复锌指结构域识别热点序列基序,在人类和小鼠中发挥关键作用,以指定减数分裂重组热点位置。我们现在探索该结构域在人类中的种系不稳定性。我们表明,重复周转是由有丝分裂和减数分裂突变途径驱动的,后者经常导致锌指的大量重塑。周转动态预测在具有快速重组景观变化的群体中经常发生等位基因转换,这与已知的热点位置快速进化完全一致。我们发现男性中减数分裂不稳定性存在与 PRDM9 状态相关的差异。一个特别的“不稳定因子”变体不仅导致自身的高度不稳定,而且还导致杂合子中其他稳定等位基因的不稳定。PRDM9 蛋白似乎调节其自身编码序列的不稳定性。然而,不稳定因子变体在群体中受到强烈的自我限制,并且可能对重组景观的进化几乎没有影响。