Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA.
J Chem Phys. 2012 Dec 21;137(23):234303. doi: 10.1063/1.4767771.
The low-lying electronic states (X (4)Δ, A (4)Π, a (6)Δ, b (6)Π) of the iron monohydride radical, which are especially troublesome for electronic structure theory, have been successfully described using a focal point analysis (FPA) approach that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through hextuple (CCSDTQPH) excitations. Adiabatic excitation energies (T(0)) and spectroscopic constants (r(e), r(0), B(e), B(0), D(e), ω(e), v(0), α(e), ω(e)x(e)) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pwCV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The purely ab initio FPA approach yields the following T(0) results (in eV) for the lowest spin-orbit components of each electronic state: 0 (X (4)Δ) < 0.132 (A (4)Π) < 0.190 (a (6)Δ) < 0.444 (b (6)Π). The computed anharmonic fundamental vibrational frequencies (v(0)) for the (4,6)Δ electronic states are within 3 cm(-1) of experiment and provide reliable predictions for the (4,6)Π states. With the cc-pVDZ basis set, even CCSDTQPH energies give an incorrect ground state of FeH, highlighting the importance of combining high-order electron correlation treatments with robust basis sets when studying transition-metal radicals. The FPA computations provide D(0) = 1.86 eV (42.9 kcal mol(-1)) for the 0 K dissociation energy of FeH and Δ(f)H(298) (∘) [FeH((g))] = 107.7 kcal mol(-1) for the enthalpy of formation at room temperature. Despite sizable multireference character in the quartet states, high-order single-reference coupled cluster computations improve the spectroscopic parameters over previous multireference theoretical studies; for example, the X (4)Δ → A (4)Π and a (6)Δ → b (6)Π transition energies are reproduced to 0.012 and 0.002 eV, respectively, while the error for the problematic X (4)Δ → a (6)Δ intercombination excitation is reduced from at least 0.17 eV to about 0.04 eV.
铁一氢化基自由基的低能电子态(X (4)Δ、A (4)Π、a (6)Δ、b (6)Π),对电子结构理论来说特别麻烦,现已成功地使用焦点分析(FPA)方法来描述,该方法将一致性的相关基组家族(直到 aug-cc-pwCV5Z-DK)与高阶耦合簇理论(通过 hextuple(CCSDTQPH)激发)结合在一起。绝热激发能(T(0))和光谱常数(r(e)、r(0)、B(e)、B(0)、D(e)、ω(e)、v(0)、α(e)、ω(e)x(e))被外推到价完整基组 Douglas-Kroll(DK)aug-cc-pwCV∞Z-DK CCSDT 理论水平,此外处理考虑了高阶价电子相关、核相关、自旋轨道耦合和对角 Born-Oppenheimer 修正。纯粹的从头计算 FPA 方法为每个电子态的最低自旋轨道分量产生以下 T(0)结果(以 eV 为单位):0(X (4)Δ)<0.132(A (4)Π)<0.190(a (6)Δ)<0.444(b (6)Π)。对于(4,6)Δ 电子态的计算非谐基本振动频率(v(0))在实验值的 3 cm(-1)以内,为(4,6)Π 态提供了可靠的预测。在 cc-pVDZ 基组中,即使 CCSDTQPH 能量也给出了 FeH 的不正确基态,突出了在研究过渡金属自由基时,将高阶电子相关处理与稳健的基组结合起来的重要性。FPA 计算为 FeH 的 0 K 离解能提供了 D(0) = 1.86 eV(42.9 kcal mol(-1)),为室温下的形成焓Δ(f)H(298)(∘)[FeH((g))] = 107.7 kcal mol(-1)。尽管四重态中有相当大的多参考特征,但高阶单参考耦合簇计算提高了光谱参数,优于以前的多参考理论研究;例如,X (4)Δ → A (4)Π 和 a (6)Δ → b (6)Π 跃迁能量分别提高到 0.012 和 0.002 eV,而对有问题的 X (4)Δ → a (6)Δ 复合激发的误差从至少 0.17 eV 降低到约 0.04 eV。