Suppr超能文献

焦磷酸测序 16S rRNA 基因技术中末端限制性片段分析的新型生物信息学方法(PyroTRF-ID)

PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data.

机构信息

Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, Lausanne 1015, Switzerland.

出版信息

BMC Microbiol. 2012 Dec 27;12:306. doi: 10.1186/1471-2180-12-306.

Abstract

BACKGROUND

In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems.

RESULTS

PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10'000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes.

CONCLUSIONS

PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly adapted for optimizing laboratory and computational efforts to describe microbial communities and their dynamics in any biological system. The high resolution of the microbial community composition is provided by pyrosequencing, which can be performed on a restricted set of selected samples, whereas T-RFLP enables simultaneous fingerprinting of numerous samples at relatively low cost and is especially adapted for routine analysis and follow-up of microbial communities on the long run.

摘要

背景

在分子微生物生态学中,大规模测序逐渐取代了经典的指纹图谱技术,如末端限制性片段长度多态性(T-RFLP)与克隆测序相结合,用于微生物组的特征描述。在此,开发了一种基于焦磷酸测序的 T-RF 鉴定(PyroTRF-ID)的生物信息学方法,将焦磷酸测序与 T-RFLP 方法相结合,用于微生物群落的描述。该方法的优势在于通过比较从相同样本获得的实验和数字 T-RFLP 图谱来鉴定 T-RFs。从 16S rRNA 基因库扩增、HaeIII 限制性内切酶 T-RFLP、454 标签编码 FLX 扩增焦磷酸测序和 PyroTRF-ID 分析的 DNA 提取物。从去噪的全焦磷酸测序数据集中生成数字 T-RFLP 图谱,并使用 Greengenes 参考数据库将对每个数字 T-RF 有贡献的序列分类到分类学仓。该方法在氯代烃污染地下水样本中发现的细菌群落和来自废水处理系统的好氧颗粒污泥生物膜中进行了测试。

结果

PyroTRF-ID 可高效地进行高通量映射和数字 T-RFLP 图谱分析焦磷酸测序数据集。去噪后,通常在高性能计算集群上处理包含约 10'000 个 300 至 500bp 的读取的数据集,运行在基于 Linux 的 CentOS 5.5 操作系统上,可并行处理多个样本。数字和实验 T-RFLP 图谱的最大互相关系数分别为 0.71 和 0.92,用于高复杂度和低复杂度环境。平均而言,所有实验 T-RFs(每个样本 30 到 93 个峰)中有 63±18% 与类群相关联。

结论

PyroTRF-ID 利用了焦磷酸测序和 T-RFLP 的互补优势,特别适合于优化实验室和计算工作,以描述任何生物系统中的微生物群落及其动态。微生物群落组成的高分辨率由焦磷酸测序提供,焦磷酸测序可以在一组受限的选定样本上进行,而 T-RFLP 能够以相对较低的成本同时对许多样本进行指纹图谱分析,特别适合于微生物群落的常规分析和长期跟踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2df4/3566925/1bbcac4b2811/1471-2180-12-306-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验