Suppr超能文献

通过同时进行偏差校正和读深度分段来提高拷贝数变异的检测。

Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation.

机构信息

Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599-7264, USA.

出版信息

Nucleic Acids Res. 2013 Feb 1;41(3):1519-32. doi: 10.1093/nar/gks1363. Epub 2012 Dec 28.

Abstract

Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.

摘要

结构变异是哺乳动物中一类重要的遗传变异。高通量测序(HTS)技术有望彻底改变拷贝数变异(CNV)的检测,但也带来了巨大的分析挑战。越来越多的证据表明,需要考虑多种类型的 CNV 信息数据(例如,读深度、读对、分读),并且需要更复杂的方法来进行更准确的 CNV 检测。我们观察到 HTS 中的各种实验偏差源会干扰读深度的估计,并注意到现有方法尚未充分解决偏差校正问题。我们提出了一种新的基于读深度的方法 GENSENG,它使用隐马尔可夫模型和负二项式回归框架来识别离散拷贝数变化的区域,同时考虑到多个混杂因素的影响。通过使用多个 HTS 数据集进行广泛的校准,我们得出结论,我们的方法优于现有的基于读深度的 CNV 检测算法。同时进行偏差校正和 CNV 检测的概念可以为在单个分析中结合读深度与其他类型的信息(如读对或分读)提供基础。我们的方法具有用户友好和计算高效的实现,可免费使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4bc/3561969/7c832a1d87df/gks1363f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验