LATP, UMR CNRS 7352 FR 3098 IFR 48, Evolution Biologique et Modélisation, Aix-Marseille Université, 13331 Marseille Cedex 3, France.
Math Biosci. 2013 Mar;242(1):95-109. doi: 10.1016/j.mbs.2012.12.003. Epub 2012 Dec 28.
Despite its intrinsic difficulty, ancestral character state reconstruction is an essential tool for testing evolutionary hypothesis. Two major classes of approaches to this question can be distinguished: parsimony- or likelihood-based approaches. We focus here on the second class of methods, more specifically on approaches based on continuous-time Markov modeling of character evolution. Among them, we consider the most-likely-ancestor reconstruction, the posterior-probability reconstruction, the likelihood-ratio method, and the Bayesian approach. We discuss and compare the above-mentioned methods over several phylogenetic trees, adding the maximum-parsimony method performance in the comparison. Under the assumption that the character evolves according a continuous-time Markov process, we compute and compare the expectations of success of each method for a broad range of model parameter values. Moreover, we show how the knowledge of the evolution model parameters allows to compute upper bounds of reconstruction performances, which are provided as references. The results of all these reconstruction methods are quite close one to another, and the expectations of success are not so far from their theoretical upper bounds. But the performance ranking heavily depends on the topology of the studied tree, on the ancestral node that is to be inferred and on the parameter values. Consequently, we propose a protocol providing for each parameter value the best method in terms of expectation of success, with regard to the phylogenetic tree and the ancestral node to infer.
尽管重建祖先特征状态具有内在的难度,但它是检验进化假说的重要工具。对于这个问题,可以区分两种主要的方法:简约法或似然法。我们在这里重点关注第二类方法,更具体地说,是基于特征演化的连续时间马尔可夫模型的方法。在这些方法中,我们考虑了最可能祖先重建、后验概率重建、似然比方法和贝叶斯方法。我们在几个系统发育树上讨论和比较了上述方法,并在比较中添加了最大简约法的性能。在特征按照连续时间马尔可夫过程演化的假设下,我们计算并比较了每种方法在广泛的模型参数值下的成功期望。此外,我们展示了如何利用进化模型参数的知识来计算重建性能的上限,这些上限作为参考提供。所有这些重建方法的结果都非常接近,成功期望与其理论上限相差不远。但是,性能排名严重依赖于所研究的树的拓扑结构、要推断的祖先节点和参数值。因此,我们提出了一个协议,针对每个参数值,根据系统发育树和要推断的祖先节点,提供成功期望最佳的方法。