Saddoris Michael P, Sugam Jonathan A, Cacciapaglia Fabio, Carelli Regina M
Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA.
Front Biosci (Elite Ed). 2013 Jan 1;5(1):273-88. doi: 10.2741/e615.
The catecholamine dopamine (DA) has been implicated in a host of neural processes as diverse as schizophrenia, parkinsonism and reward encoding. Importantly, these distinct features of DA function are due in large part to separate neural circuits involving connections arising from different DA-releasing nuclei and projections to separate afferent targets. Emerging data has suggested that this same principle of separate neural circuits may be applicable within structural subregions, such as the core and shell of the nucleus accumbens (NAc). Further, DA may act selectively on smaller ensembles of cells (or, microcircuits) via differential DA receptor density and distinct inputs and outputs of the microcircuits, thus enabling new learning about Pavlovian cues, instrumental responses, subjective reward processing and decision-making. In this review, by taking advantage of studies using subsecond voltammetric techniques in behaving animals to study how rapid changes in DA levels affect behavior, we examine the spatial and temporal features of DA release and how it relates to both normal learning and similarities to pathological learning in the form of addiction.
儿茶酚胺多巴胺(DA)已被证明参与了一系列神经过程,这些过程涵盖范围广泛,包括精神分裂症、帕金森症和奖赏编码等。重要的是,DA功能的这些不同特征在很大程度上归因于不同的神经回路,这些回路涉及源自不同DA释放核团的连接以及投射到不同传入靶点。新出现的数据表明,这种不同神经回路的相同原理可能适用于结构亚区域,如伏隔核(NAc)的核心和壳。此外,DA可能通过不同的DA受体密度以及微回路独特的输入和输出,选择性地作用于较小的细胞集合(即微回路),从而使关于经典条件线索、工具性反应、主观奖赏处理和决策的新学习成为可能。在本综述中,我们利用在行为动物中使用亚秒级伏安法技术的研究,来探讨DA水平的快速变化如何影响行为,以此研究DA释放的时空特征,以及它与正常学习的关系,以及它与成瘾形式的病理性学习的相似性。