Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
J Gen Physiol. 2013 Jan;141(1):119-32. doi: 10.1085/jgp.201210883.
Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency.
钾(K(+))离子在神经兴奋时释放到脑细胞外液(ECS)中,被星形胶质细胞高效摄取。在小鼠中,星形胶质细胞水通道 aquaporin-4(AQP4)的缺失通过减少 ECS[K(+)]积累和减缓 K(+)摄取来改变神经兴奋。这些影响可能涉及 AQP4 依赖性:(a) K(+)通透性,(b) 静息 ECS 体积,(c) K(+)摄取期间 ECS 收缩,和 (d) 扩散限制的水/K(+)转运偶联。为了研究这些机制的作用,我们将实验数据与 K(+)和水摄取到星形胶质细胞的模型预测进行了比较,该模型模拟了神经元将 K(+)释放到 ECS 后,K(+)和水在星形胶质细胞中的摄取动力学。模型计算了 ECS[K(+)]和体积的动力学,输入参数包括初始 ECS 体积、星形胶质细胞 K(+)电导和水通透性,以及星形胶质细胞质中的扩散。开发了数值方法来计算非稳态星形胶质细胞-ECS 界面的运输和扩散。模型表明,机制 b-d 共同作用,可以预测 AQP4 缺乏时 ECS 中 K(+)摄取的实验观察到的损害,以及神经兴奋后 ECS 中 K(+)的积累改变,前提是 AQP4 缺乏时星形胶质细胞水通透性足够降低,并且星形胶质细胞质中的溶质扩散足够低。因此,该模型为 ECS 中依赖于 AQP4 的 K(+)/水偶联提供了一个潜在的解释,而不需要依赖于 AQP4 的星形胶质细胞 K(+)通透性。我们的模型将脑细胞的物理和离子/水转运特性与神经兴奋的动力学联系起来,并支持这样的结论,即依赖于 AQP4 的水转运减少是 AQP4 缺乏时神经兴奋缺陷的原因。