Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):954-9. doi: 10.1073/pnas.1212957110. Epub 2012 Dec 31.
Photosystem II uses light to drive water oxidation and plastoquinone (PQ) reduction. PQ reduction involves two PQ cofactors, Q(A) and Q(B), working in series. Q(A) is a one-electron carrier, whereas Q(B) undergoes sequential reduction and protonation to form Q(B)H(2). Q(B)H(2) exchanges with PQ from the pool in the membrane. Based on the atomic coordinates of the Photosystem II crystal structure, we analyzed the proton transfer (PT) energetics adopting a quantum mechanical/molecular mechanical approach. The potential-energy profile suggests that the initial PT to Q(B)(•-) occurs from the protonated, D1-His252 to Q(B)(•)(-) via D1-Ser264. The second PT is likely to occur from D1-His215 to Q(B)H(-) via an H-bond with an energy profile with a single well, resulting in the formation of Q(B)H(2) and the D1-His215 anion. The pathway for reprotonation of D1-His215(-) may involve bicarbonate, D1-Tyr246 and water in the Q(B) site. Formate ligation to Fe(2+) did not significantly affect the protonation of reduced Q(B), suggesting that formate inhibits Q(B)H(2) release rather than its formation. The presence of carbonate rather than bicarbonate seems unlikely because the calculations showed that this greatly perturbed the potential of the nonheme iron, stabilizing the Fe(3+) state in the presence of Q(B)(•-), a situation not encountered experimentally. H-bonding from D1-Tyr246 and D2-Tyr244 to the bicarbonate ligand of the nonheme iron contributes to the stability of the semiquinones. A detailed mechanistic model for Q(B) reduction is presented.
光系统 II 利用光驱动水氧化和质体醌 (PQ) 还原。PQ 还原涉及两个 PQ 辅助因子,Q(A) 和 Q(B),串联工作。Q(A)是单电子载体,而 Q(B)经历连续还原和质子化形成 Q(B)H(2)。Q(B)H(2)与来自膜中池的 PQ 交换。基于光系统 II 晶体结构的原子坐标,我们采用量子力学/分子力学方法分析质子转移 (PT) 能学。势能曲线表明,最初的 PT 从质子化的 D1-His252 到 Q(B)(•-) 通过 D1-Ser264 发生在 Q(B)(•)(-)上。第二次 PT 可能通过 D1-His215 到 Q(B)H(-)发生,通过与 D1-His215 阴离子形成氢键的能量曲线具有单势阱,导致 Q(B)H(2)和 D1-His215 阴离子的形成。D1-His215(-)的再质子化途径可能涉及 Q(B)位点中的碳酸氢盐、D1-Tyr246 和水。甲酸盐与 Fe(2+)的配位并没有显著影响还原 Q(B)的质子化,这表明甲酸盐抑制了 Q(B)H(2)的释放而不是其形成。碳酸盐而不是碳酸氢盐的存在似乎不太可能,因为计算表明这会极大地干扰非血红素铁的电位,在存在 Q(B)(•-)的情况下稳定 Fe(3+)状态,这种情况在实验中没有遇到。D1-Tyr246 和 D2-Tyr244 与非血红素铁的碳酸氢盐配体之间的氢键有助于半醌的稳定性。提出了一个详细的 Q(B)还原机制模型。