Department of Electrical Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.
Chaos. 2012 Dec;22(4):043108. doi: 10.1063/1.4761818.
In this study, exponential finite-time synchronization for generalized Lorenz chaotic systems is investigated. The significant contribution of this paper is that master-slave synchronization is achieved within a pre-specified convergence time and with a simple linear control. The designed linear control consists of two parts: one achieves exponential synchronization, and the other realizes finite-time synchronization within a guaranteed convergence time. Furthermore, the control gain depends on the parameters of the exponential convergence rate, the finite-time convergence rate, the bound of the initial states of the master system, and the system parameter. In addition, the proposed approach can be directly and efficiently applied to secure communication. Finally, four numerical examples are provided to demonstrate the feasibility and correctness of the obtained results.
本研究探讨了广义 Lorenz 混沌系统的指数有限时间同步。本文的重要贡献在于,通过简单的线性控制,在给定的收敛时间内实现了主从同步。所设计的线性控制由两部分组成:一部分实现指数同步,另一部分在给定的收敛时间内实现有限时间同步。此外,控制增益取决于指数收敛速率、有限时间收敛速率、主系统初始状态的界和系统参数的参数。此外,所提出的方法可以直接有效地应用于安全通信。最后,提供了四个数值示例来说明所得到的结果的可行性和正确性。