Suppr超能文献

基于 SMILES 的 1,4-二氢吡啶类钙通道拮抗作用的定量构效关系模型。

SMILES-based QSAR models for the calcium channel-antagonistic effect of 1,4-dihydropyridines.

机构信息

Department of Chemistry, University of Niš, Niš, Serbia.

出版信息

Arch Pharm (Weinheim). 2013 Feb;346(2):134-9. doi: 10.1002/ardp.201200373. Epub 2012 Dec 20.

Abstract

The activity of 72 1,4-dihydropyridines as calcium channel antagonists was examined. The simplified molecular input-line entry system (SMILES) was used as representation of the molecular structure of the calcium channel antagonists. Quantitative structure-activity relationships (QSARs) were developed using CORAL software (http://www.insilico.eu/CORAL) for four random splits of the data into the training and test sets. Using the Monte Carlo method, the CORAL software generated the optimal descriptors for one-variable models. The reproducibility of each model was tested performing three runs of the Monte Carlo optimization. The obtained results reveal good predictive potential of the applied approach: The correlation coefficients (r(2) ) for the test sets of the four random splits are 0.9571, 0.9644, 0.9836, and 0.9444.

摘要

研究了 721,4-二氢吡啶作为钙通道拮抗剂的活性。简化分子线性输入系统(SMILES)被用作钙通道拮抗剂的分子结构表示。使用 CORAL 软件(http://www.insilico.eu/CORAL)为数据的四个随机拆分开发了定量构效关系(QSAR),分为训练集和测试集。使用蒙特卡罗方法,CORAL 软件为单变量模型生成了最佳描述符。通过执行蒙特卡罗优化的三次运行来测试每个模型的可重复性。所得结果表明,所应用方法具有良好的预测潜力:四个随机拆分的测试集的相关系数(r(2))分别为 0.9571、0.9644、0.9836 和 0.9444。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验