Suppr超能文献

作为将综合数据转化为通过纳米金属氧化物预测细胞膜损伤的翻译器的最佳纳米描述符。

Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides.

作者信息

Toropova Alla P, Toropov Andrey A, Benfenati Emilio, Korenstein Rafi, Leszczynska Danuta, Leszczynski Jerzy

机构信息

IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milan, Italy.

出版信息

Environ Sci Pollut Res Int. 2015 Jan;22(1):745-57. doi: 10.1007/s11356-014-3566-4. Epub 2014 Sep 17.

Abstract

Systematization of knowledge on nanomaterials has become a necessity with the fast growth of applications of these species. Building up predictive models that describe properties (both beneficial and hazardous) of nanomaterials is vital for computational sciences. Classic quantitative structure-property/activity relationships (QSPR/QSAR) are not suitable for investigating nanomaterials because of the complexity of their molecular architecture. However, some characteristics such as size, concentration, and exposure time can influence endpoints (beneficial or hazardous) related to nanoparticles and they can therefore be involved in building a model. Application of the optimal descriptors calculated with the so-called correlation weights of various concentrations and different exposure times are suggested in order to build up a predictive model for cell membrane damage caused by a series of nano metal-oxides. The numerical data on correlation weights are calculated by the Monte Carlo method. The obtained results are in good agreement with the experimental data.

摘要

随着纳米材料应用的快速增长,对其知识进行系统化已成为必要。建立描述纳米材料性质(有益和有害)的预测模型对计算科学至关重要。经典的定量结构-性质/活性关系(QSPR/QSAR)由于纳米材料分子结构的复杂性而不适用于研究它们。然而,一些特征如尺寸、浓度和暴露时间会影响与纳米颗粒相关的终点(有益或有害),因此它们可参与构建模型。为了建立一系列纳米金属氧化物引起的细胞膜损伤的预测模型,建议应用通过各种浓度和不同暴露时间的所谓相关权重计算得到的最佳描述符。相关权重的数值数据通过蒙特卡罗方法计算。所得结果与实验数据吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验