Fravolini M L, Fabietti P G
a Department of Electronic and Information Engineering , University of Perugia , Via G. Duranti No. 93, 06125 Perugia , Italy.
Comput Methods Biomech Biomed Engin. 2014;17(13):1464-82. doi: 10.1080/10255842.2012.753064. Epub 2013 Jan 3.
This paper proposes a scheme for the control of the blood glucose in subjects with type-1 diabetes mellitus based on the subcutaneous (s.c.) glucose measurement and s.c. insulin administration. The tuning of the controller is based on an iterative learning strategy that exploits the repetitiveness of the daily feeding habit of a patient. The control consists of a mixed feedback and feedforward contribution whose parameters are tuned through an iterative learning process that is based on the day-by-day automated analysis of the glucose response to the infusion of exogenous insulin. The scheme does not require any a priori information on the patient insulin/glucose response, on the meal times and on the amount of ingested carbohydrates (CHOs). Thanks to the learning mechanism the scheme is able to improve its performance over time. A specific logic is also introduced for the detection and prevention of possible hypoglycaemia events. The effectiveness of the methodology has been validated using long-term simulation studies applied to a set of nine in silico patients considering realistic uncertainties on the meal times and on the quantities of ingested CHOs.
本文提出了一种基于皮下血糖测量和皮下胰岛素给药来控制1型糖尿病患者血糖的方案。控制器的调整基于一种迭代学习策略,该策略利用了患者日常饮食习惯的重复性。该控制由混合反馈和前馈作用组成,其参数通过一个迭代学习过程进行调整,该过程基于对输注外源性胰岛素后血糖反应的逐日自动分析。该方案不需要关于患者胰岛素/葡萄糖反应、用餐时间和摄入碳水化合物(CHO)量的任何先验信息。由于学习机制,该方案能够随着时间的推移提高其性能。还引入了一种特定逻辑用于检测和预防可能的低血糖事件。该方法的有效性已通过长期模拟研究得到验证,该研究应用于一组九个虚拟患者,考虑了用餐时间和摄入CHO量的实际不确定性。