Suppr超能文献

控制接入点控制器:控制器性能评估与改进

Controlling the AP Controller: Controller Performance Assessment and Modification.

作者信息

Hajizadeh Iman, Hobbs Nicole, Samadi Sediqeh, Sevil Mert, Rashid Mudassir, Brandt Rachel, Askari Mohammad Reza, Maloney Zacharie, Cinar Ali

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA.

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.

出版信息

J Diabetes Sci Technol. 2019 Nov;13(6):1091-1104. doi: 10.1177/1932296819877217. Epub 2019 Sep 27.

Abstract

BACKGROUND

Despite recent advances in closed-loop control of blood glucose concentration (BGC) in people with type 1 diabetes (T1D), online performance assessment and modification of artificial pancreas (AP) control systems remain a challenge as the metabolic characteristics of users change over time.

METHODS

A controller performance assessment and modification system (CPAMS) analyzes the glucose concentration variations and controller behavior, and modifies the parameters of the control system used in the multivariable AP system. Various indices are defined to quantitatively evaluate the controller performance in real time. Controller performance assessment and modification system also incorporates online learning from historical data to anticipate impending disturbances and proactively counteract their effects.

RESULTS

Using a multivariable simulation platform for T1D, the CPAMS is used to enhance the BGC regulation in people with T1D by means of automated insulin delivery with an adaptive learning predictive controller. Controller performance assessment and modification system increases the percentage of time in the target range (70-180) mg/dL by 52.3% without causing any hypoglycemia and hyperglycemia events.

CONCLUSIONS

The results demonstrate a significant improvement in the multivariable AP controller performance by using CPAMS.

摘要

背景

尽管1型糖尿病(T1D)患者血糖浓度(BGC)闭环控制方面最近取得了进展,但随着用户代谢特征随时间变化,人工胰腺(AP)控制系统的在线性能评估和修改仍然是一项挑战。

方法

一种控制器性能评估和修改系统(CPAMS)分析葡萄糖浓度变化和控制器行为,并修改多变量AP系统中使用的控制系统参数。定义了各种指标以实时定量评估控制器性能。控制器性能评估和修改系统还结合了从历史数据进行的在线学习,以预测即将发生的干扰并主动抵消其影响。

结果

使用针对T1D的多变量模拟平台,CPAMS通过使用自适应学习预测控制器进行自动胰岛素输注,用于增强T1D患者的BGC调节。控制器性能评估和修改系统将目标范围(70-180)mg/dL内的时间百分比提高了52.3%,且未引起任何低血糖和高血糖事件。

结论

结果表明,使用CPAMS可使多变量AP控制器性能有显著改善。

相似文献

1
Controlling the AP Controller: Controller Performance Assessment and Modification.
J Diabetes Sci Technol. 2019 Nov;13(6):1091-1104. doi: 10.1177/1932296819877217. Epub 2019 Sep 27.
3
The International Diabetes Closed-Loop Study: Testing Artificial Pancreas Component Interoperability.
Diabetes Technol Ther. 2019 Feb;21(2):73-80. doi: 10.1089/dia.2018.0308. Epub 2019 Jan 16.
5
The Bio-inspired Artificial Pancreas for Type 1 Diabetes Control in the Home: System Architecture and Preliminary Results.
J Diabetes Sci Technol. 2019 Nov;13(6):1017-1025. doi: 10.1177/1932296819881456. Epub 2019 Oct 14.
6
An integrated multivariable artificial pancreas control system.
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.
10
Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
J Diabetes Sci Technol. 2015 Jun 30;10(1):104-10. doi: 10.1177/1932296815593292.

本文引用的文献

1
Plasma-Insulin-Cognizant Adaptive Model Predictive Control for Artificial Pancreas Systems.
J Process Control. 2019 May;77:97-113. doi: 10.1016/j.jprocont.2019.03.009. Epub 2019 Apr 10.
2
Detection and Control of Unannounced Exercise in the Artificial Pancreas Without Additional Physiological Signals.
IEEE J Biomed Health Inform. 2020 Jan;24(1):259-267. doi: 10.1109/JBHI.2019.2898558. Epub 2019 Feb 11.
3
Multivariate learning framework for long-term adaptation in the artificial pancreas.
Bioeng Transl Med. 2018 Nov 12;4(1):61-74. doi: 10.1002/btm2.10119. eCollection 2019 Jan.
4
Multi-level Supervision and Modification of Artificial Pancreas Control System.
Comput Chem Eng. 2018 Apr 6;112:57-69. doi: 10.1016/j.compchemeng.2018.02.002. Epub 2018 Feb 10.
5
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.
6
Incorporating Unannounced Meals and Exercise in Adaptive Learning of Personalized Models for Multivariable Artificial Pancreas Systems.
J Diabetes Sci Technol. 2018 Sep;12(5):953-966. doi: 10.1177/1932296818789951. Epub 2018 Jul 31.
7
Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.
J Diabetes Sci Technol. 2018 May;12(3):639-649. doi: 10.1177/1932296818763959. Epub 2018 Mar 23.
8
Automatic Adaptation of Basal Insulin Using Sensor-Augmented Pump Therapy.
J Diabetes Sci Technol. 2018 Mar;12(2):282-294. doi: 10.1177/1932296818761752.
9
Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.
Diabetes Technol Ther. 2017 Sep;19(9):527-532. doi: 10.1089/dia.2017.0078. Epub 2017 Aug 2.
10
An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions.
J Diabetes Sci Technol. 2017 May;11(3):537-544. doi: 10.1177/1932296816680632. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验