Suppr超能文献

m-AAA 蛋白酶介导的易位增加了跨膜螺旋在酵母线粒体内膜中滞留的疏水性阈值。

Dislocation by the m-AAA protease increases the threshold hydrophobicity for retention of transmembrane helices in the inner membrane of yeast mitochondria.

机构信息

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

J Biol Chem. 2013 Feb 15;288(7):4792-8. doi: 10.1074/jbc.M112.430892. Epub 2013 Jan 2.

Abstract

Sorting of mitochondrial inner membrane proteins is a complex process in which translocons and proteases function in a concerted way. Many inner membrane proteins insert into the membrane via the TIM23 translocon, and some are then further acted upon by the mitochondrial m-AAA protease, a molecular motor capable of dislocating proteins from the inner membrane. This raises the possibility that the threshold hydrophobicity for the retention of transmembrane segments in the inner membrane is different depending on whether they belong to membrane proteins that are m-AAA protease substrates or not. Here, using model transmembrane segments engineered into m-AAA protease-dependent proteins, we show that the threshold hydrophobicity for membrane retention measured in yeast cells in the absence of a functional m-AAA protease is markedly lower than that measured in its presence. Whether a given hydrophobic segment in a mitochondrial inner membrane protein will ultimately form a transmembrane helix may therefore depend on whether or not it will be exposed to the pulling force exerted by the m-AAA protease during biogenesis.

摘要

线粒体内膜蛋白的分拣是一个复杂的过程,其中转位酶和蛋白酶以协同的方式发挥作用。许多内膜蛋白通过 TIM23 转位酶插入膜中,然后一些蛋白进一步被线粒体 m-AAA 蛋白酶作用,m-AAA 蛋白酶是一种能够将蛋白质从内膜中移位的分子马达。这就提出了这样一种可能性,即跨膜片段在内膜中保留的疏水阈值可能取决于它们是否属于 m-AAA 蛋白酶底物的膜蛋白。在这里,我们使用工程化的跨膜片段构建了依赖于 m-AAA 蛋白酶的蛋白质,结果表明,在酵母细胞中测量的在缺乏功能性 m-AAA 蛋白酶时的膜保留的疏水阈值明显低于在存在 m-AAA 蛋白酶时的测量值。因此,线粒体内膜蛋白中给定的疏水性片段是否最终形成跨膜螺旋可能取决于它是否会在生物发生过程中暴露于 m-AAA 蛋白酶施加的拉力之下。

相似文献

2
Molecular insights into the -AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.
J Biol Chem. 2017 Dec 8;292(49):20058-20066. doi: 10.1074/jbc.M117.796763. Epub 2017 Oct 13.
3
Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor.
J Biol Chem. 2014 Oct 10;289(41):28689-96. doi: 10.1074/jbc.M114.588152. Epub 2014 Aug 25.
4
TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane.
EMBO J. 2011 Mar 16;30(6):1003-11. doi: 10.1038/emboj.2011.29. Epub 2011 Feb 15.
5
Dissecting stop transfer versus conservative sorting pathways for mitochondrial inner membrane proteins in vivo.
J Biol Chem. 2013 Jan 18;288(3):1521-32. doi: 10.1074/jbc.M112.409748. Epub 2012 Nov 26.
7
Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.
J Biol Chem. 2011 Feb 11;286(6):4404-11. doi: 10.1074/jbc.M110.158741. Epub 2010 Dec 8.
9
ROMO1 is a constituent of the human presequence translocase required for YME1L protease import.
J Cell Biol. 2019 Feb 4;218(2):598-614. doi: 10.1083/jcb.201806093. Epub 2018 Dec 31.

引用本文的文献

2
The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly.
Plant Physiol. 2021 May 27;186(1):599-610. doi: 10.1093/plphys/kiab074.
3
The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry.
J Biol Chem. 2021 Jan-Jun;296:100029. doi: 10.1074/jbc.RA120.014739. Epub 2020 Nov 23.
4
6
Folding-Degradation Relationship of a Membrane Protein Mediated by the Universally Conserved ATP-Dependent Protease FtsH.
J Am Chem Soc. 2018 Apr 4;140(13):4656-4665. doi: 10.1021/jacs.8b00832. Epub 2018 Mar 21.
7
Molecular insights into the -AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.
J Biol Chem. 2017 Dec 8;292(49):20058-20066. doi: 10.1074/jbc.M117.796763. Epub 2017 Oct 13.
8
Multifunctional Mitochondrial AAA Proteases.
Front Mol Biosci. 2017 May 22;4:34. doi: 10.3389/fmolb.2017.00034. eCollection 2017.

本文引用的文献

1
Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria.
EMBO J. 2011 May 24;30(13):2545-56. doi: 10.1038/emboj.2011.169.
2
Charged flanking residues control the efficiency of membrane insertion of the first transmembrane segment in yeast mitochondrial Mgm1p.
FEBS Lett. 2011 Apr 20;585(8):1238-42. doi: 10.1016/j.febslet.2011.03.056. Epub 2011 Mar 30.
3
TIM23-mediated insertion of transmembrane α-helices into the mitochondrial inner membrane.
EMBO J. 2011 Mar 16;30(6):1003-11. doi: 10.1038/emboj.2011.29. Epub 2011 Feb 15.
5
AAA proteases in mitochondria: diverse functions of membrane-bound proteolytic machines.
Res Microbiol. 2009 Nov;160(9):711-7. doi: 10.1016/j.resmic.2009.09.005. Epub 2009 Sep 22.
6
Analysis of transmembrane helix integration in the endoplasmic reticulum in S. cerevisiae.
J Mol Biol. 2009 Mar 13;386(5):1222-8. doi: 10.1016/j.jmb.2009.01.027.
7
Molecular code for transmembrane-helix recognition by the Sec61 translocon.
Nature. 2007 Dec 13;450(7172):1026-30. doi: 10.1038/nature06387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验