Suppr超能文献

Cox2p-W56R第二个跨膜螺旋中的一组新突变显著提高了其在酿酒酵母中的异位表达。

A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae.

作者信息

Gombeau Kewin, Hoffmann Stefan A, Cai Yizhi

机构信息

Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.

Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK.

出版信息

Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyaf037.

Abstract

The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.

摘要

线粒体呼吸功能的双重遗传控制,加上线粒体基因组(mtDNA)的高突变率,使得线粒体疾病成为人类最常见的遗传病之一(成年人中每5000人中有1人患病)。由于没有有效的治疗方法,人们提出了基因治疗方法。值得注意的是,几项研究已经证明,功能失调的线粒体基因的健康拷贝在细胞核中表达(称为异位表达)有助于恢复呼吸功能。然而,异位表达条件需要进行重大优化。我们利用工程生物学工具来改善酿酒酵母中COX2-W56R基因的异位表达。通过进行随机诱变并筛选载体拷贝数、启动子和线粒体靶向序列的影响,我们大幅增加了异位蛋白的线粒体整合,并显著提高了线粒体呼吸的恢复。此外,连续非变性聚丙烯酰胺凝胶电泳(CN-PAGE)分析表明,我们优化后的异位蛋白不会影响细胞色素c氧化酶的组装或呼吸链超复合物的生物合成。重要的是,在第二个跨膜螺旋中发现的最有益的氨基酸取代(L93S和I102K)是人类MT-CO2相应位置(L73和L75)的保守残基,我们认为模仿这些变化可能有助于改善人类细胞中异位Cox2p的表达。总之,这项研究证明了使用工程生物学方法优化面包酵母中线粒体基因异位表达的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b109/12005268/f08a2cbca382/iyaf037f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验