Suppr超能文献

体外和体内 knots 蛋白折叠的机制研究。

Mechanistic insights into the folding of knotted proteins in vitro and in vivo.

机构信息

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam.

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

J Mol Biol. 2015 Jan 30;427(2):248-58. doi: 10.1016/j.jmb.2014.09.007. Epub 2014 Sep 16.

Abstract

The importance of knots and entanglements in biological systems is increasingly being realized and the number of proteins with topologically complex knotted structures has risen. However, the mechanism as to how these proteins knot and fold efficiently remains unclear. Using a cell-free expression system and pulse-proteolysis experiments, we have investigated the mechanism of knotting and folding for two bacterial trefoil-knotted methyltransferases. This study provides the first experimental evidence for a knotting mechanism. Results on fusions of stable protein domains to N-terminus, C-terminus or both termini of the knotted proteins clearly demonstrate that threading of the nascent chain through a knotting loop occurs via the C-terminus. Our results strongly suggest that this mechanism occurs even when the C-terminus is severely hindered by the addition of a large stable structure, in contrast to some simulations indicating that even the folding pathways of knotted proteins have some plasticity. The same strategy was employed to probe the effects of GroEL-GroES. In this case, results suggest active mechanisms for the molecular chaperonin. We demonstrate that a simple model in which GroEL-GroES sterically confines the unknotted polypeptide chain thereby promoting knotting is unlikely, and we propose two alternatives: (a) the chaperonin facilitates unfolding of kinetically and topologically trapped intermediates or (b) the chaperonin stabilizes interactions that promote knotting. These findings provide mechanistic insights into the folding of knotted proteins both in vitro and in vivo, thus elucidating how they have withstood evolutionary pressures regardless of their complex topologies and intrinsically slow folding rates.

摘要

生物系统中纽结和缠结的重要性日益被认识到,具有拓扑复杂纽结结构的蛋白质数量也有所增加。然而,这些蛋白质如何有效地打结和折叠的机制仍不清楚。本研究使用无细胞表达系统和脉冲蛋白水解实验,研究了两种细菌三叶型纽结甲基转移酶的打结和折叠机制。该研究首次提供了关于打结机制的实验证据。关于稳定蛋白结构域融合到纽结蛋白的 N 端、C 端或两者的结果清楚地表明,新生链通过纽结环的穿线是通过 C 端发生的。我们的结果强烈表明,即使 C 端由于添加了大的稳定结构而严重受阻,这种机制也会发生,这与一些模拟结果形成对比,模拟结果表明,即使纽结蛋白的折叠途径也具有一定的可塑性。同样的策略也被用来探测 GroEL-GroES 的影响。在这种情况下,结果表明分子伴侣具有主动机制。我们证明,GroEL-GroES 空间限制未纽结多肽链从而促进打结的简单模型不太可能,我们提出了两种替代方案:(a) 伴侣蛋白促进动力学和拓扑学上困住的中间产物的解折叠,或(b) 伴侣蛋白稳定促进打结的相互作用。这些发现为体外和体内纽结蛋白的折叠提供了机制上的见解,从而阐明了它们如何在不受其复杂拓扑结构和固有缓慢折叠速率影响的情况下,经受住了进化压力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验