Schwab Evan, Afsari Bijan, Vidal René
Center for Imaging Science, Johns Hopkins University, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):322-30. doi: 10.1007/978-3-642-33418-4_40.
Current methods in high angular resolution diffusion imaging (HARDI) estimate the probability density function of water diffusion as a continuous-valued orientation distribution function (ODF) on the sphere. However, such methods could produce an ODF with negative values, because they enforce non-negativity only at finitely many directions. In this paper, we propose to enforce non-negativity on the continuous domain by enforcing the positive semi-definiteness of Toeplitz-like matrices constructed from the spherical harmonic representation of the ODF. We study the distribution of the eigenvalues of these matrices and use it to derive an iterative semi-definite program that enforces non-negativity on the continuous domain. We illustrate the performance of our method and compare it to the state-of-the-art with experiments on synthetic and real data.
当前高角分辨率扩散成像(HARDI)方法将水扩散的概率密度函数估计为球面上的连续值方向分布函数(ODF)。然而,此类方法可能会产生负值的ODF,因为它们仅在有限多个方向上强制非负性。在本文中,我们建议通过强制由ODF的球谐表示构造的类托普利兹矩阵的半正定性,在连续域上强制非负性。我们研究这些矩阵的特征值分布,并利用它来推导一个在连续域上强制非负性的迭代半定规划。我们通过对合成数据和真实数据的实验来说明我们方法的性能,并将其与现有技术进行比较。