Suppr超能文献

利用球函数的特征值分布估计非负ODF

Estimation of non-negative ODFs using the eigenvalue distribution of spherical functions.

作者信息

Schwab Evan, Afsari Bijan, Vidal René

机构信息

Center for Imaging Science, Johns Hopkins University, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):322-30. doi: 10.1007/978-3-642-33418-4_40.

Abstract

Current methods in high angular resolution diffusion imaging (HARDI) estimate the probability density function of water diffusion as a continuous-valued orientation distribution function (ODF) on the sphere. However, such methods could produce an ODF with negative values, because they enforce non-negativity only at finitely many directions. In this paper, we propose to enforce non-negativity on the continuous domain by enforcing the positive semi-definiteness of Toeplitz-like matrices constructed from the spherical harmonic representation of the ODF. We study the distribution of the eigenvalues of these matrices and use it to derive an iterative semi-definite program that enforces non-negativity on the continuous domain. We illustrate the performance of our method and compare it to the state-of-the-art with experiments on synthetic and real data.

摘要

当前高角分辨率扩散成像(HARDI)方法将水扩散的概率密度函数估计为球面上的连续值方向分布函数(ODF)。然而,此类方法可能会产生负值的ODF,因为它们仅在有限多个方向上强制非负性。在本文中,我们建议通过强制由ODF的球谐表示构造的类托普利兹矩阵的半正定性,在连续域上强制非负性。我们研究这些矩阵的特征值分布,并利用它来推导一个在连续域上强制非负性的迭代半定规划。我们通过对合成数据和真实数据的实验来说明我们方法的性能,并将其与现有技术进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验