Project Team Athena, INRIA Sophia Antipolis - Méditerranée, 2004 Route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France.
Med Image Anal. 2013 Jul;17(5):503-14. doi: 10.1016/j.media.2013.03.004. Epub 2013 Mar 21.
Antipodally symmetric spherical functions play a pivotal role in diffusion MRI in representing sub-voxel-resolution microstructural information of the underlying tissue. This information is described by the geometry of the spherical function. In this paper we propose a method to automatically compute all the extrema of a spherical function. We then classify the extrema as maxima, minima and saddle-points to identify the maxima. We take advantage of the fact that a spherical function can be described equivalently in the spherical harmonic (SH) basis, in the symmetric tensor (ST) basis constrained to the sphere, and in the homogeneous polynomial (HP) basis constrained to the sphere. We extract the extrema of the spherical function by computing the stationary points of its constrained HP representation. Instead of using traditional optimization approaches, which are inherently local and require exhaustive search or re-initializations to locate multiple extrema, we use a novel polynomial system solver which analytically brackets all the extrema and refines them numerically, thus missing none and achieving high precision. To illustrate our approach we consider the Orientation Distribution Function (ODF). In diffusion MRI the ODF is a spherical function which represents a state-of-the-art reconstruction algorithm whose maxima are aligned with the dominant fiber bundles. It is, therefore, vital to correctly compute these maxima to detect the fiber bundle directions. To demonstrate the potential of the proposed polynomial approach we compute the extrema of the ODF to extract all its maxima. This polynomial approach is, however, not dependent on the ODF and the framework presented in this paper can be applied to any spherical function described in either the SH basis, ST basis or the HP basis.
对径对称球函数在扩散磁共振成像中起着至关重要的作用,可用于表示基础组织亚体素分辨率的微观结构信息。这些信息由球函数的几何形状描述。在本文中,我们提出了一种自动计算球函数所有极值的方法。然后,我们将极值分类为极大值、极小值和鞍点,以识别极大值。我们利用这样一个事实,即球函数可以在球谐(SH)基、约束在球上的对称张量(ST)基和约束在球上的齐次多项式(HP)基中等效地描述。我们通过计算其约束 HP 表示的稳定点来提取球函数的极值。我们不使用传统的优化方法,这些方法本质上是局部的,需要进行详尽的搜索或重新初始化以定位多个极值,而是使用一种新的多项式系统求解器,该求解器可以分析性地括住所有极值并进行数值细化,从而不会遗漏任何极值,并实现高精度。为了说明我们的方法,我们考虑了方向分布函数(ODF)。在扩散磁共振成像中,ODF 是一种球函数,它代表了一种最先进的重建算法,其极大值与主导纤维束对齐。因此,正确计算这些极大值以检测纤维束方向至关重要。为了展示所提出的多项式方法的潜力,我们计算了 ODF 的极值以提取所有极大值。然而,这种多项式方法并不依赖于 ODF,并且本文提出的框架可以应用于在 SH 基、ST 基或 HP 基中描述的任何球函数。