Suppr超能文献

基于概率密度约束和空间正则性估计方向分布函数

Estimating orientation distribution functions with probability density constraints and spatial regularity.

作者信息

Goh Alvina, Lenglet Christophe, Thompson Paul M, Vidal René

机构信息

CIS and Dept. of Biomedical Engineering, Johns Hopkins University, USA.

出版信息

Med Image Comput Comput Assist Interv. 2009;12(Pt 1):877-85. doi: 10.1007/978-3-642-04268-3_108.

Abstract

High angular resolution diffusion imaging (HARDI) has become an important magnetic resonance technique for in vivo imaging. Current techniques for estimating the diffusion orientation distribution function (ODF), i.e., the probability density function of water diffusion along any direction, do not enforce the estimated ODF to be nonnegative or to sum up to one. Very often this leads to an estimated ODF which is not a proper probability density function. In addition, current methods do not enforce any spatial regularity of the data. In this paper, we propose an estimation method that naturally constrains the estimated ODF to be a proper probability density function and regularizes this estimate using spatial information. By making use of the spherical harmonic representation, we pose the ODF estimation problem as a convex optimization problem and propose a coordinate descent method that converges to the minimizer of the proposed cost function. We illustrate our approach with experiments on synthetic and real data.

摘要

高角分辨率扩散成像(HARDI)已成为一种重要的体内磁共振成像技术。当前用于估计扩散方向分布函数(ODF)的技术,即水沿任何方向扩散的概率密度函数,并未强制使估计出的ODF为非负或总和为1。这常常导致估计出的ODF不是一个合适的概率密度函数。此外,当前方法并未强制数据具有任何空间规律性。在本文中,我们提出一种估计方法,该方法自然地将估计出的ODF约束为合适的概率密度函数,并利用空间信息对该估计进行正则化。通过使用球谐表示,我们将ODF估计问题转化为一个凸优化问题,并提出一种坐标下降方法,该方法收敛到所提出代价函数的最小值。我们通过对合成数据和真实数据的实验来说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验