Suppr超能文献

应用于心脏扩散张量磁共振成像的线性不变张量插值

Linear invariant tensor interpolation applied to cardiac diffusion tensor MRI.

作者信息

Gahm Jin Kyu, Wisniewski Nicholas, Kindlmann Gordon, Kung Geoffrey L, Klug William S, Garfinkel Alan, Ennis Daniel B

机构信息

Department of Radiological Sciences, UCLA, CA 90095, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):494-501. doi: 10.1007/978-3-642-33418-4_61.

Abstract

PURPOSE

Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape.

METHODS

Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets.

RESULTS

EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI.

CONCLUSION

GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost.

摘要

目的

存在多种用于插值扩散张量场的方法,但它们均未对张量形状属性进行线性插值。线性插值预计不会在张量形状中引入虚假变化。

方法

在此我们定义一种新的线性不变(LI)张量插值方法,该方法对张量形状的分量(张量不变量)进行线性插值,并从线性插值的张量不变量和线性插值张量的特征向量中重构插值张量。使用合成张量场和三个实验测量的心脏DT - MRI数据集,将LI张量插值方法与欧几里得(EU)、仿射不变黎曼(AI)、对数欧几里得(LE)和测地线斜航线(GL)插值方法进行比较。

结果

EU、AI和LE会引入显著的微观结构偏差,通过使用GL或LI可避免这种偏差。

结论

GL引入的微观结构偏差最小,但LI张量插值的表现非常相似,且计算成本大幅降低。

相似文献

1
Linear invariant tensor interpolation applied to cardiac diffusion tensor MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):494-501. doi: 10.1007/978-3-642-33418-4_61.
2
Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI.
Med Image Anal. 2012 Feb;16(2):459-81. doi: 10.1016/j.media.2011.11.003. Epub 2011 Nov 17.
3
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):1-9. doi: 10.1007/978-3-540-75757-3_1.
4
Fast and simple calculus on tensors in the log-Euclidean framework.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):115-22. doi: 10.1007/11566465_15.
6
On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection.
Phys Med Biol. 2016 Nov 7;61(21):7765-7786. doi: 10.1088/0031-9155/61/21/7765. Epub 2016 Oct 18.
7
The effects of noise over the complete space of diffusion tensor shape.
Med Image Anal. 2014 Jan;18(1):197-210. doi: 10.1016/j.media.2013.10.009. Epub 2013 Oct 28.
8
Bilateral filtering of diffusion tensor magnetic resonance images.
IEEE Trans Image Process. 2007 Oct;16(10):2463-75. doi: 10.1109/tip.2007.904964.
9
Comparison of regularization methods for human cardiac diffusion tensor MRI.
Med Image Anal. 2009 Jun;13(3):405-18. doi: 10.1016/j.media.2009.01.002. Epub 2009 Jan 20.
10
Using Perturbation theory to reduce noise in diffusion tensor fields.
Med Image Anal. 2009 Aug;13(4):580-97. doi: 10.1016/j.media.2009.05.001. Epub 2009 May 15.

引用本文的文献

1
Estimating cardiomyofiber strain in vivo by solving a computational model.
Med Image Anal. 2021 Feb;68:101932. doi: 10.1016/j.media.2020.101932. Epub 2020 Dec 5.
2
TIME RESOLVED DISPLACEMENT-BASED REGISTRATION OF CDTI CARDIOMYOCYTE ORIENTATIONS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:474-478. doi: 10.1109/ISBI.2018.8363619.
3
Microstructural Infarct Border Zone Remodeling in the Post-infarct Swine Heart Measured by Diffusion Tensor MRI.
Front Physiol. 2018 Aug 22;9:826. doi: 10.3389/fphys.2018.00826. eCollection 2018.
5
Microstructurally Anchored Cardiac Kinematics by Combining DENSE MRI and cDTI.
Funct Imaging Model Heart. 2017 Jun;10263:381-391. doi: 10.1007/978-3-319-59448-4_36. Epub 2017 May 23.
6
Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.
PLoS One. 2014 Dec 10;9(12):e114494. doi: 10.1371/journal.pone.0114494. eCollection 2014.

本文引用的文献

1
Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI.
Med Image Anal. 2012 Feb;16(2):459-81. doi: 10.1016/j.media.2011.11.003. Epub 2011 Nov 17.
2
The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation.
J Magn Reson Imaging. 2011 Nov;34(5):1080-91. doi: 10.1002/jmri.22725. Epub 2011 Sep 19.
3
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):1-9. doi: 10.1007/978-3-540-75757-3_1.
4
Diffusion tensor analysis with invariant gradients and rotation tangents.
IEEE Trans Med Imaging. 2007 Nov;26(11):1483-99. doi: 10.1109/TMI.2007.907277.
5
Log-Euclidean metrics for fast and simple calculus on diffusion tensors.
Magn Reson Med. 2006 Aug;56(2):411-21. doi: 10.1002/mrm.20965.
6
Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images.
Magn Reson Med. 2006 Jan;55(1):136-46. doi: 10.1002/mrm.20741.
7
A rigorous framework for diffusion tensor calculus.
Magn Reson Med. 2005 Jan;53(1):221-5. doi: 10.1002/mrm.20334.
8
Visualization of tensor fields using superquadric glyphs.
Magn Reson Med. 2005 Jan;53(1):169-76. doi: 10.1002/mrm.20318.
9
Estimation of the effective self-diffusion tensor from the NMR spin echo.
J Magn Reson B. 1994 Mar;103(3):247-54. doi: 10.1006/jmrb.1994.1037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验