Suppr超能文献

应用于心脏扩散张量磁共振成像的线性不变张量插值

Linear invariant tensor interpolation applied to cardiac diffusion tensor MRI.

作者信息

Gahm Jin Kyu, Wisniewski Nicholas, Kindlmann Gordon, Kung Geoffrey L, Klug William S, Garfinkel Alan, Ennis Daniel B

机构信息

Department of Radiological Sciences, UCLA, CA 90095, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):494-501. doi: 10.1007/978-3-642-33418-4_61.

Abstract

PURPOSE

Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape.

METHODS

Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets.

RESULTS

EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI.

CONCLUSION

GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost.

摘要

目的

存在多种用于插值扩散张量场的方法,但它们均未对张量形状属性进行线性插值。线性插值预计不会在张量形状中引入虚假变化。

方法

在此我们定义一种新的线性不变(LI)张量插值方法,该方法对张量形状的分量(张量不变量)进行线性插值,并从线性插值的张量不变量和线性插值张量的特征向量中重构插值张量。使用合成张量场和三个实验测量的心脏DT - MRI数据集,将LI张量插值方法与欧几里得(EU)、仿射不变黎曼(AI)、对数欧几里得(LE)和测地线斜航线(GL)插值方法进行比较。

结果

EU、AI和LE会引入显著的微观结构偏差,通过使用GL或LI可避免这种偏差。

结论

GL引入的微观结构偏差最小,但LI张量插值的表现非常相似,且计算成本大幅降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/409e/4539150/d4ae5694611d/nihms713360f1.jpg

相似文献

4
Fast and simple calculus on tensors in the log-Euclidean framework.对数欧几里得框架下张量的快速简易演算
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):115-22. doi: 10.1007/11566465_15.
7
The effects of noise over the complete space of diffusion tensor shape.噪声对扩散张量形态全空间的影响。
Med Image Anal. 2014 Jan;18(1):197-210. doi: 10.1016/j.media.2013.10.009. Epub 2013 Oct 28.
8
Bilateral filtering of diffusion tensor magnetic resonance images.扩散张量磁共振图像的双边滤波
IEEE Trans Image Process. 2007 Oct;16(10):2463-75. doi: 10.1109/tip.2007.904964.
10
Using Perturbation theory to reduce noise in diffusion tensor fields.利用微扰理论降低扩散张量场中的噪声。
Med Image Anal. 2009 Aug;13(4):580-97. doi: 10.1016/j.media.2009.05.001. Epub 2009 May 15.

引用本文的文献

5
Microstructurally Anchored Cardiac Kinematics by Combining DENSE MRI and cDTI.通过结合DENSE MRI和cDTI实现微观结构锚定的心脏运动学
Funct Imaging Model Heart. 2017 Jun;10263:381-391. doi: 10.1007/978-3-319-59448-4_36. Epub 2017 May 23.

本文引用的文献

7
A rigorous framework for diffusion tensor calculus.扩散张量演算的严格框架。
Magn Reson Med. 2005 Jan;53(1):221-5. doi: 10.1002/mrm.20334.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验