Hamarneh Ghassan, Hradsky Judith
Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
IEEE Trans Image Process. 2007 Oct;16(10):2463-75. doi: 10.1109/tip.2007.904964.
We extend the well-known scalar image bilateral filtering technique to diffusion tensor magnetic resonance images (DTMRI). The scalar version of bilateral image filtering is extended to perform edge-preserving smoothing of DT field data. The bilateral DT filtering is performed in the Log-Euclidean framework which guarantees valid output tensors. Smoothing is achieved by weighted averaging of neighboring tensors. Analogous to bilateral filtering of scalar images, the weights are chosen to be inversely proportional to two distance measures: The geometrical Euclidean distance between the spatial locations of tensors and the dissimilarity of tensors. We describe the noniterative DT smoothing equation in closed form and show how interpolation of DT data is treated as a special case of bilateral filtering where only spatial distance is used. We evaluate different recent DT tensor dissimilarity metrics including the Log-Euclidean, the similarity-invariant Log-Euclidean, the square root of the J-divergence, and the distance scaled mutual diffusion coefficient. We present qualitative and quantitative smoothing and interpolation results and show their effect on segmentation, for both synthetic DT field data, as well as real cardiac and brain DTMRI data.
我们将著名的标量图像双边滤波技术扩展至扩散张量磁共振图像(DTMRI)。双边图像滤波的标量版本被扩展以对DT场数据执行保边平滑处理。双边DT滤波在对数欧几里得框架中进行,这确保了输出张量的有效性。平滑通过对相邻张量进行加权平均来实现。与标量图像的双边滤波类似,权重被选择为与两种距离度量成反比:张量空间位置之间的几何欧几里得距离以及张量的差异度。我们以封闭形式描述非迭代DT平滑方程,并展示DT数据的插值如何被视为双边滤波的一种特殊情况,其中仅使用空间距离。我们评估了不同的近期DT张量差异度量,包括对数欧几里得度量、相似不变对数欧几里得度量、J散度的平方根以及距离缩放互扩散系数。我们展示了针对合成DT场数据以及真实心脏和脑部DTMRI数据的定性和定量平滑及插值结果,并展示了它们对分割的影响。