Kindlmann Gordon, Estépar Raúl San José, Niethammer Marc, Haker Steven, Westin Carl-Fredrik
Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, USA.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):1-9. doi: 10.1007/978-3-540-75757-3_1.
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
在处理扩散张量图像的算法中,两个常见要素是张量插值和测量它们之间的距离。我们提出了一种新的张量插值路径类别,称为测地线斜航线,它在使用基本微分几何对张量方向进行插值时,明确保留了临床上重要的张量属性,如平均扩散率或分数各向异性。这与之前保留行列式的黎曼和对数欧几里得方法形成对比。测地线斜航线切线的路径积分生成了两个张量之间总体差异以及形状和方向差异的新度量。