Gao Fei, Liu Huafeng, Shi Pengcheng
Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):558-65. doi: 10.1007/978-3-642-33454-2_69.
Dynamic PET imaging provides important spatial-temporal information for metabolism analysis of organs and tissues, and generates a great reference for clinical diagnosis and pharmacokinetic analysis. Due to poor statistical properties of the measurement data in low count dynamic PET acquisition and disturbances from surrounding tissues, identifying small lesions inside the human body is still a challenging issue. The uncertainties in estimating the arterial input function will also limit the accuracy and reliability of the metabolism analysis of lesions. Furthermore, the sizes of the patients and the motions during PET acquisition will yield mismatch against general purpose reconstruction system matrix, this will also affect the quantitative accuracy of metabolism analyses of lesions. In this paper, we present a dynamic PET metabolism analysis framework by defining a patient adaptive system matrix to improve the lesion metabolism analysis. Both patient size information and potential small lesions are incorporated by simulations of phantoms of different sizes and individual point source responses. The new framework improves the quantitative accuracy of lesion metabolism analysis, and makes the lesion identification more precisely. The requirement of accurate input functions is also reduced. Experiments are conducted on Monte Carlo simulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential.
动态正电子发射断层显像(PET)成像为器官和组织的代谢分析提供了重要的时空信息,并为临床诊断和药代动力学分析提供了重要参考。由于低计数动态PET采集中测量数据的统计特性较差以及周围组织的干扰,识别人体内的小病变仍然是一个具有挑战性的问题。估计动脉输入函数时的不确定性也会限制病变代谢分析的准确性和可靠性。此外,患者的体型以及PET采集过程中的运动将导致与通用重建系统矩阵不匹配,这也会影响病变代谢分析的定量准确性。在本文中,我们提出了一种动态PET代谢分析框架,通过定义患者自适应系统矩阵来改进病变代谢分析。通过模拟不同大小的体模和个体点源响应,将患者体型信息和潜在的小病变都纳入其中。新框架提高了病变代谢分析的定量准确性,并使病变识别更加精确。对准确输入函数的要求也降低了。在蒙特卡罗模拟数据集上进行实验以进行定量分析和验证,并在真实患者扫描数据上进行实验以评估临床潜力。