Suppr超能文献

预测欧洲一般实践就诊者的重度抑郁症发病:将 predictD 风险算法的应用从 12 个月扩展到 24 个月。

Predicting onset of major depression in general practice attendees in Europe: extending the application of the predictD risk algorithm from 12 to 24 months.

机构信息

Mental Health Sciences Unit, Faculty of Brain Sciences, University College London Medical School, London, UK.

出版信息

Psychol Med. 2013 Sep;43(9):1929-39. doi: 10.1017/S0033291712002693. Epub 2013 Jan 4.

Abstract

BACKGROUND

PredictD is a risk algorithm that was developed to predict risk of onset of major depression over 12 months in general practice attendees in Europe and validated in a similar population in Chile. It was the first risk algorithm to be developed in the field of mental disorders. Our objective was to extend predictD as an algorithm to detect people at risk of major depression over 24 months. Method Participants were 4190 adult attendees to general practices in the UK, Spain, Slovenia and Portugal, who were not depressed at baseline and were followed up for 24 months. The original predictD risk algorithm for onset of DSM-IV major depression had already been developed in data arising from the first 12 months of follow-up. In this analysis we fitted predictD to the longer period of follow-up, first by examining only the second year (12-24 months) and then the whole period of follow-up (0-24 months).

RESULTS

The instrument performed well for prediction of major depression from 12 to 24 months [c-index 0.728, 95% confidence interval (CI) 0.675-0.781], or over the whole 24 months (c-index 0.783, 95% CI 0.757-0.809).

CONCLUSIONS

The predictD risk algorithm for major depression is accurate over 24 months, extending it current use of prediction over 12 months. This strengthens its use in prevention efforts in general medical settings.

摘要

背景

PredictD 是一种风险算法,旨在预测欧洲普通诊所就诊者在 12 个月内出现重度抑郁症的风险,并在智利的类似人群中进行验证。它是该领域第一个开发的精神障碍风险算法。我们的目的是扩展 predictD,使其成为一种可用于检测 24 个月内患有重度抑郁症风险的算法。

方法

参与者为英国、西班牙、斯洛文尼亚和葡萄牙的 4190 名成年普通诊所就诊者,他们在基线时没有抑郁,并随访了 24 个月。用于诊断 DSM-IV 重度抑郁症的原始 predictD 风险算法已在最初 12 个月随访期间的数据中开发。在这项分析中,我们将 predictD 应用于更长的随访期,首先仅检查第二年(12-24 个月),然后检查整个随访期(0-24 个月)。

结果

该工具在预测 12 至 24 个月的重度抑郁症方面表现良好[C 指数 0.728,95%置信区间(CI)0.675-0.781],或在整个 24 个月内表现良好[C 指数 0.783,95%CI 0.757-0.809]。

结论

PredictD 重度抑郁症风险算法在 24 个月内准确,延长了其在 12 个月内的预测使用。这增强了其在普通医疗环境中预防工作中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验