Suppr超能文献

人工智能框架模拟临床决策:马尔可夫决策过程方法。

Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.

机构信息

Department of Informatics, Centerstone Research Institute, 44 Vantage Way, Suite 280, Nashville, TN 37228, USA.

出版信息

Artif Intell Med. 2013 Jan;57(1):9-19. doi: 10.1016/j.artmed.2012.12.003. Epub 2012 Dec 31.

Abstract

OBJECTIVE

In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This framework serves two potential functions: (1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and (2) the basis for clinical artificial intelligence - an AI that can "think like a doctor".

METHODS

This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans as actions are performed and new observations are obtained. This framework was evaluated using real patient data from an electronic health record.

RESULTS

The results demonstrate the feasibility of this approach; such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare. The cost per unit of outcome change (CPUC) was $189 vs. $497 for AI vs. TAU (where lower is considered optimal) - while at the same time the AI approach could obtain a 30-35% increase in patient outcomes. Tweaking certain AI model parameters could further enhance this advantage, obtaining approximately 50% more improvement (outcome change) for roughly half the costs.

CONCLUSION

Given careful design and problem formulation, an AI simulation framework can approximate optimal decisions even in complex and uncertain environments. Future work is described that outlines potential lines of research and integration of machine learning algorithms for personalized medicine.

摘要

目的

在现代医疗保健系统中,成本/复杂性迅速扩大、治疗选择的种类繁多以及信息流的爆炸式增长,这些往往不能有效地到达前线,从而阻碍了随着时间的推移选择最佳治疗决策的能力。本文的目标是开发一种通用(非特定于疾病)的计算/人工智能(AI)框架来应对这些挑战。该框架具有两个潜在功能:(1)用于探索各种医疗保健政策、支付方法等的模拟环境,以及(2)临床人工智能的基础——一种可以“像医生一样思考”的 AI。

方法

该方法结合了马尔可夫决策过程和动态决策网络,通过模拟替代的顺序决策路径从临床数据中学习并制定复杂的计划,同时捕捉医疗保健系统中各种组件之间有时相互冲突、有时协同的相互作用。它可以在部分可观察的环境中(在存在缺失观察或数据的情况下)运行,通过维护患者健康状况和功能的信念状态来工作,并作为在线代理,在执行操作和获得新观察时进行计划和重新计划。该框架使用电子健康记录中的真实患者数据进行了评估。

结果

结果表明了该方法的可行性;这种 AI 框架很容易超越当前的治疗即常规(TAU)病例率/按服务收费的医疗保健模式。单位结果变化成本(CPUC)为 189 美元,而 AI 为 497 美元,AI 比 TAU (成本越低越好)更具优势——同时 AI 方法可以使患者的结果提高 30-35%。调整某些 AI 模型参数可以进一步提高这一优势,大约可以获得 50%的改善(结果变化),而成本仅为一半左右。

结论

在精心设计和问题制定的情况下,即使在复杂和不确定的环境中,AI 模拟框架也可以接近最佳决策。未来的工作描述了潜在的研究方向和机器学习算法在个性化医疗中的集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验