Suppr超能文献

机器学习在急性胰腺炎临床应用中的进展:综述

Advances in the clinical application of machine learning in acute pancreatitis: a review.

作者信息

Tan Zhaowang, Li Gaoxiang, Zheng Yueliang, Li Qian, Cai Wenwei, Tu Jianfeng, Jin Senjun

机构信息

Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.

出版信息

Front Med (Lausanne). 2025 Jan 7;11:1487271. doi: 10.3389/fmed.2024.1487271. eCollection 2024.

Abstract

Traditional disease prediction models and scoring systems for acute pancreatitis (AP) are often inadequate in providing concise, reliable, and effective predictions regarding disease progression and prognosis. As a novel interdisciplinary field within artificial intelligence (AI), machine learning (ML) is increasingly being applied to various aspects of AP, including severity assessment, complications, recurrence rates, organ dysfunction, and the timing of surgical intervention. This review focuses on recent advancements in the application of ML models in the context of AP.

摘要

传统的急性胰腺炎(AP)疾病预测模型和评分系统在对疾病进展和预后提供简洁、可靠且有效的预测方面往往存在不足。作为人工智能(AI)领域内一个新兴的跨学科领域,机器学习(ML)正越来越多地应用于AP的各个方面,包括严重程度评估、并发症、复发率、器官功能障碍以及手术干预时机。本综述重点关注ML模型在AP背景下应用的最新进展。

相似文献

8
Machine learning predictive models for acute pancreatitis: A systematic review.机器学习预测急性胰腺炎模型的系统评价。
Int J Med Inform. 2022 Jan;157:104641. doi: 10.1016/j.ijmedinf.2021.104641. Epub 2021 Nov 10.

本文引用的文献

2
American College of Gastroenterology Guidelines: Management of Acute Pancreatitis.美国胃肠病学会指南:急性胰腺炎的管理。
Am J Gastroenterol. 2024 Mar 1;119(3):419-437. doi: 10.14309/ajg.0000000000002645. Epub 2023 Nov 7.
10
Advances in the management of acute pancreatitis.急性胰腺炎管理的进展
Nat Rev Gastroenterol Hepatol. 2023 Nov;20(11):691-692. doi: 10.1038/s41575-023-00808-w.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验