Department of Materials Science and Engineering, the University of Texas at Dallas, Richardson, Texas 75080, United States.
ACS Appl Mater Interfaces. 2013 Feb;5(3):605-13. doi: 10.1021/am3019405. Epub 2013 Jan 17.
Interface layers between reactive and energetic materials in nanolaminates or nanoenergetic materials are believed to play a crucial role in the properties of nanoenergetic systems. Typically, in the case of Metastable Interstitial Composite nanolaminates, the interface layer between the metal and oxide controls the onset reaction temperature, reaction kinetics, and stability at low temperature. So far, the formation of these interfacial layers is not well understood for lack of in situ characterization, leading to a poor control of important properties. We have combined in situ infrared spectroscopy and ex situ X-ray photoelectron spectroscopy, differential scanning calorimetry, and high resolution transmission electron microscopy, in conjunction with first-principles calculations to identify the stable configurations that can occur at the interface and determine the kinetic barriers for their formation. We find that (i) an interface layer formed during physical deposition of aluminum is composed of a mixture of Cu, O, and Al through Al penetration into CuO and constitutes a poor diffusion barrier (i.e., with spurious exothermic reactions at lower temperature), and in contrast, (ii) atomic layer deposition (ALD) of alumina layers using trimethylaluminum (TMA) produces a conformal coating that effectively prevents Al diffusion even for ultrathin layer thicknesses (∼0.5 nm), resulting in better stability at low temperature and reduced reactivity. Importantly, the initial reaction of TMA with CuO leads to the extraction of oxygen from CuO to form an amorphous interfacial layer that is an important component for superior protection properties of the interface and is responsible for the high system stability. Thus, while Al e-beam evaporation and ALD growth of an alumina layer on CuO both lead to CuO reduction, the mechanism for oxygen removal is different, directly affecting the resistance to Al diffusion. This work reveals that it is the nature of the monolayer interface between CuO and alumina/Al rather than the thickness of the alumina layer that controls the kinetics of Al diffusion, underscoring the importance of the chemical bonding at the interface in these energetic materials.
在纳米层状或纳米含能材料中,活性和含能材料之间的界面层被认为在含能系统的性能中起着至关重要的作用。通常,在亚稳中间化合物纳米层状材料的情况下,金属和氧化物之间的界面层控制着起始反应温度、反应动力学和低温下的稳定性。到目前为止,由于缺乏原位表征,这些界面层的形成还没有得到很好的理解,导致对重要性质的控制不佳。我们结合了原位红外光谱和非原位 X 射线光电子能谱、差示扫描量热法和高分辨率透射电子显微镜,以及第一性原理计算,以确定在界面上可能出现的稳定构型,并确定其形成的动力学障碍。我们发现:(i)在铝的物理沉积过程中形成的界面层由 Cu、O 和 Al 的混合物组成,这是通过 Al 渗透到 CuO 中形成的,构成了一个较差的扩散障碍(即在较低温度下发生异常的放热反应);而相反,(ii)使用三甲基铝(TMA)的原子层沉积(ALD)氧化铝层会产生一种保形涂层,即使对于超薄层厚度(约 0.5nm),也能有效地阻止 Al 扩散,从而在低温下具有更好的稳定性和降低的反应性。重要的是,TMA 与 CuO 的初始反应导致从 CuO 中提取氧,形成非晶态界面层,这是界面优异保护性能的重要组成部分,也是导致界面高系统稳定性的原因。因此,虽然 Al 电子束蒸发和 CuO 上的 ALD 氧化铝层生长都会导致 CuO 还原,但氧去除的机制不同,这直接影响 Al 扩散的阻力。这项工作表明,控制 Al 扩散动力学的是 CuO 和氧化铝/Al 之间的单层界面的性质,而不是氧化铝层的厚度,这突显了这些含能材料中界面化学键的重要性。