Department of Anatomy and Neurobiology, Parkinson's Disease Translational Research Center of Excellence, University of Kentucky Medical Center, 306 Davis Mills Bldg., 800 Rose St., Lexington, KY 40536, USA.
Pharmacol Biochem Behav. 2013 Mar;104:10-9. doi: 10.1016/j.pbb.2012.12.022. Epub 2013 Jan 2.
Glial cell-line derived neurotrophic factor (GDNF) has been established as a growth factor for the survival and maintenance of dopamine (DA) neurons. In phase I clinical trials, GDNF treatment in Parkinson's disease patients led to improved motor function and GDNF has been found to be down regulated in Parkinson's disease patients. Studies using GDNF heterozygous (Gdnf(+/-)) mice have demonstrated that a partial reduction of GDNF leads to an age-related accelerated decline in nigrostriatal DA system- and motor-function and increased neuro-inflammation and oxidative stress in the substantia nigra (SN). Therefore, the purpose of the current studies was to determine if GDNF replacement restores motor function and functional markers within the nigrostriatal DA system in middle-aged Gdnf(+/-) mice. At 11months of age, male Gdnf(+/-) and wildtype (WT) mice underwent bilateral intra-striatal injections of GDNF (10μg) or vehicle. Locomotor activity was assessed weekly 1-4weeks after treatment. Four weeks after treatment, their brains were processed for analysis of GDNF levels and various DAergic and oxidative stress markers. An intrastriatal injection of GDNF increased motor activity in Gdnf(+/-) mice to levels comparable to WT mice (1week after injection) and this effect was maintained through the 4-week time point. This increase in locomotion was accompanied by a 40% increase in striatal GDNF protein levels and SN GDNF expression in Gdnf(+/-) mice. Additionally, GDNF treatment significantly increased the number of tyrosine hydroxylase (TH)-positive neurons in the SN of middle-aged Gdnf(+/-) mice, but not WT mice, which was coupled with reduced oxidative stress in the SN. These studies further support that long-term changes related to the dysfunction of the nigrostriatal pathway are influenced by GDNF expression and add that this dysfunction appears to be responsive to GDNF treatment. Additionally, these studies suggest that long-term GDNF depletion alters the biological and behavioral responses to GDNF treatment.
胶质细胞源性神经营养因子(GDNF)已被确立为多巴胺(DA)神经元存活和维持的生长因子。在 I 期临床试验中,GDNF 治疗帕金森病患者导致运动功能改善,并且已经发现 GDNF 在帕金森病患者中下调。使用 GDNF 杂合子(Gdnf(+/-))小鼠的研究表明,GDNF 的部分减少导致黑质纹状体 DA 系统和运动功能的与年龄相关的加速下降,并且黑质中的神经炎症和氧化应激增加(SN)。因此,目前的研究目的是确定 GDNF 替代是否能恢复中年 Gdnf(+/-) 小鼠黑质纹状体 DA 系统中的运动功能和功能标志物。在 11 个月大时,雄性 Gdnf(+/-) 和野生型(WT)小鼠接受双侧纹状体注射 GDNF(10μg)或载体。治疗后 1-4 周每周评估运动活动。治疗后 4 周,对其大脑进行处理以分析 GDNF 水平和各种 DA 能和氧化应激标志物。纹状体注射 GDNF 可使 Gdnf(+/-) 小鼠的运动活动增加至与 WT 小鼠相当的水平(注射后 1 周),并且这种作用持续到 4 周时间点。这种运动的增加伴随着纹状体内 GDNF 蛋白水平和 SN GDNF 表达增加 40%。此外,GDNF 治疗显著增加了中年 Gdnf(+/-) 小鼠 SN 中酪氨酸羟化酶(TH)阳性神经元的数量,但 WT 小鼠没有,这与 SN 中的氧化应激减少有关。这些研究进一步支持与黑质纹状体途径功能障碍相关的长期变化受 GDNF 表达的影响,并补充说这种功能障碍似乎对 GDNF 治疗有反应。此外,这些研究表明,长期 GDNF 耗竭改变了对 GDNF 治疗的生物学和行为反应。