Department of Animal Sciences, Georg-August-Universität Göttingen, 37075 Göttingen, Germany.
Biostatistics. 2013 Jul;14(3):447-61. doi: 10.1093/biostatistics/kxs051. Epub 2013 Jan 5.
We propose a class of estimation techniques for scalar-on-function regression where both outcomes and functional predictors may be observed at multiple visits. Our methods are motivated by a longitudinal brain diffusion tensor imaging tractography study. One of the study's primary goals is to evaluate the contemporaneous association between human function and brain imaging over time. The complexity of the study requires the development of methods that can simultaneously incorporate: (1) multiple functional (and scalar) regressors; (2) longitudinal outcome and predictor measurements per patient; (3) Gaussian or non-Gaussian outcomes; and (4) missing values within functional predictors. We propose two versions of a new method, longitudinal functional principal components regression (PCR). These methods extend the well-known functional PCR and allow for different effects of subject-specific trends in curves and of visit-specific deviations from that trend. The new methods are compared with existing approaches, and the most promising techniques are used for analyzing the tractography data.
我们提出了一类用于标量函数回归的估计技术,其中结果和功能预测因子都可以在多次就诊时观察到。我们的方法是受到一项纵向脑扩散张量成像束流追踪研究的启发。该研究的主要目标之一是评估随时间推移的人类功能与脑成像之间的同期关联。研究的复杂性要求开发能够同时结合以下因素的方法:(1)多个功能(和标量)回归因子;(2)每个患者的纵向结果和预测因子测量;(3)高斯或非高斯结果;(4)功能预测因子中的缺失值。我们提出了一种新方法——纵向功能主成分回归(PCR)的两个版本。这些方法扩展了著名的功能 PCR,并允许对曲线的特定于个体的趋势和对该趋势的特定于就诊的偏差具有不同的影响。将新方法与现有方法进行了比较,并使用最有前途的技术对束流追踪数据进行了分析。