Suppr超能文献

基于神经束测量的认知结果的纵向惩罚函数回归

Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.

作者信息

Goldsmith Jeff, Crainiceanu Ciprian M, Caffo Brian, Reich Daniel

出版信息

J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.

Abstract

We describe and analyze a longitudinal diffusion tensor imaging (DTI) study relating changes in the microstructure of intracranial white matter tracts to cognitive disability in multiple sclerosis patients. In this application the scalar outcome and the functional exposure are measured longitudinally. This data structure is new and raises challenges that cannot be addressed with current methods and software. To analyze the data, we introduce a penalized functional regression model and inferential tools designed specifically for these emerging types of data. Our proposed model extends the Generalized Linear Mixed Model by adding functional predictors; this method is computationally feasible and is applicable when the functional predictors are measured densely, sparsely or with error. An online appendix compares two implementations, one likelihood-based and the other Bayesian, and provides the software used in simulations; the likelihood-based implementation is included as the lpfr() function in the R package refund available on CRAN.

摘要

我们描述并分析了一项纵向扩散张量成像(DTI)研究,该研究将颅内白质束微观结构的变化与多发性硬化症患者的认知障碍联系起来。在此应用中,标量结果和功能暴露是纵向测量的。这种数据结构是全新的,带来了当前方法和软件无法解决的挑战。为了分析数据,我们引入了一种惩罚函数回归模型和专门针对这些新兴数据类型设计的推理工具。我们提出的模型通过添加函数预测变量扩展了广义线性混合模型;当函数预测变量密集、稀疏或有误差测量时,该方法在计算上是可行的且适用。一个在线附录比较了两种实现方式,一种基于似然性,另一种是贝叶斯方法,并提供了模拟中使用的软件;基于似然性的实现方式作为lpfr()函数包含在CRAN上可用的R包refund中。

相似文献

1
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.基于神经束测量的认知结果的纵向惩罚函数回归
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
2
Penalized Functional Regression.惩罚性函数回归
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
7
Incorporating covariates in skewed functional data models.在偏态函数数据模型中纳入协变量。
Biostatistics. 2015 Jul;16(3):413-26. doi: 10.1093/biostatistics/kxu055. Epub 2014 Dec 19.
8
Functional Additive Mixed Models.功能加性混合模型
J Comput Graph Stat. 2015 Apr 1;24(2):477-501. doi: 10.1080/10618600.2014.901914.

引用本文的文献

3
Multilevel Longitudinal Functional Principal Component Model.多层次纵向函数主成分模型。
Stat Med. 2024 Nov 10;43(25):4781-4795. doi: 10.1002/sim.10207. Epub 2024 Sep 3.
10
Fast Univariate Inference for Longitudinal Functional Models.纵向功能模型的快速单变量推断
J Comput Graph Stat. 2022;31(1):219-230. doi: 10.1080/10618600.2021.1950006. Epub 2021 Aug 4.

本文引用的文献

1
Penalized Functional Regression.惩罚性函数回归
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
2
Longitudinal functional principal component analysis.纵向功能主成分分析
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
6
Generalized Multilevel Functional Regression.广义多级功能回归
J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561. doi: 10.1198/jasa.2009.tm08564.
7
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.多级功能主成分分析
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验