Greven Sonja, Crainiceanu Ciprian, Caffo Brian, Reich Daniel
Department of Statistics, Ludwig-Maximilians-University Munich, Ludwigstr. 33, 80539 Munich, Germany.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
We introduce models for the analysis of functional data observed at multiple time points. The dynamic behavior of functional data is decomposed into a time-dependent population average, baseline (or static) subject-specific variability, longitudinal (or dynamic) subject-specific variability, subject-visit-specific variability and measurement error. The model can be viewed as the functional analog of the classical longitudinal mixed effects model where random effects are replaced by random processes. Methods have wide applicability and are computationally feasible for moderate and large data sets. Computational feasibility is assured by using principal component bases for the functional processes. The methodology is motivated by and applied to a diffusion tensor imaging (DTI) study designed to analyze differences and changes in brain connectivity in healthy volunteers and multiple sclerosis (MS) patients. An R implementation is provided.87.
我们介绍了用于分析在多个时间点观测到的功能数据的模型。功能数据的动态行为被分解为随时间变化的总体平均值、基线(或静态)个体特异性变异性、纵向(或动态)个体特异性变异性、个体访视特异性变异性和测量误差。该模型可被视为经典纵向混合效应模型的功能类似物,其中随机效应被随机过程所取代。这些方法具有广泛的适用性,对于中等规模和大规模数据集在计算上是可行的。通过使用功能过程的主成分基来确保计算的可行性。该方法的灵感来源于一项扩散张量成像(DTI)研究,并应用于该研究,该研究旨在分析健康志愿者和多发性硬化症(MS)患者大脑连通性的差异和变化。还提供了一个R语言实现。87.