Suppr超能文献

纵向功能主成分分析

Longitudinal functional principal component analysis.

作者信息

Greven Sonja, Crainiceanu Ciprian, Caffo Brian, Reich Daniel

机构信息

Department of Statistics, Ludwig-Maximilians-University Munich, Ludwigstr. 33, 80539 Munich, Germany.

出版信息

Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.

Abstract

We introduce models for the analysis of functional data observed at multiple time points. The dynamic behavior of functional data is decomposed into a time-dependent population average, baseline (or static) subject-specific variability, longitudinal (or dynamic) subject-specific variability, subject-visit-specific variability and measurement error. The model can be viewed as the functional analog of the classical longitudinal mixed effects model where random effects are replaced by random processes. Methods have wide applicability and are computationally feasible for moderate and large data sets. Computational feasibility is assured by using principal component bases for the functional processes. The methodology is motivated by and applied to a diffusion tensor imaging (DTI) study designed to analyze differences and changes in brain connectivity in healthy volunteers and multiple sclerosis (MS) patients. An R implementation is provided.87.

摘要

我们介绍了用于分析在多个时间点观测到的功能数据的模型。功能数据的动态行为被分解为随时间变化的总体平均值、基线(或静态)个体特异性变异性、纵向(或动态)个体特异性变异性、个体访视特异性变异性和测量误差。该模型可被视为经典纵向混合效应模型的功能类似物,其中随机效应被随机过程所取代。这些方法具有广泛的适用性,对于中等规模和大规模数据集在计算上是可行的。通过使用功能过程的主成分基来确保计算的可行性。该方法的灵感来源于一项扩散张量成像(DTI)研究,并应用于该研究,该研究旨在分析健康志愿者和多发性硬化症(MS)患者大脑连通性的差异和变化。还提供了一个R语言实现。87.

相似文献

1
Longitudinal functional principal component analysis.纵向功能主成分分析
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
3
Longitudinal Functional Data Analysis.纵向功能数据分析
Stat (Int Stat Inst). 2015;4(1):212-226. doi: 10.1002/sta4.89. Epub 2015 Aug 24.
4
Penalized Functional Regression.惩罚性函数回归
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
6
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.基于神经束测量的认知结果的纵向惩罚函数回归
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
9
Statistical image analysis of longitudinal RAVENS images.纵向RAVENS图像的统计图像分析
Front Neurosci. 2015 Oct 20;9:368. doi: 10.3389/fnins.2015.00368. eCollection 2015.

引用本文的文献

4
Multilevel Longitudinal Functional Principal Component Model.多层次纵向函数主成分模型。
Stat Med. 2024 Nov 10;43(25):4781-4795. doi: 10.1002/sim.10207. Epub 2024 Sep 3.
9
Robust scalar-on-function partial quantile regression.稳健的函数标量分位数回归
J Appl Stat. 2023 Apr 19;51(7):1359-1377. doi: 10.1080/02664763.2023.2202464. eCollection 2024.

本文引用的文献

1
Generalized Multilevel Functional Regression.广义多级功能回归
J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561. doi: 10.1198/jasa.2009.tm08564.
2
FRATS: Functional Regression Analysis of DTI Tract Statistics.FRATS:DTI 束统统计的功能回归分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49. doi: 10.1109/TMI.2010.2040625. Epub 2010 Mar 22.
3
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.多级功能主成分分析
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
4
Non-linear Models for Longitudinal Data.纵向数据的非线性模型
Am Stat. 2009 Nov 1;63(4):378-388. doi: 10.1198/tast.2009.07256.
6
Fast methods for spatially correlated multilevel functional data.快速的空间相关多层函数数据分析方法。
Biostatistics. 2010 Apr;11(2):177-94. doi: 10.1093/biostatistics/kxp058. Epub 2010 Jan 19.
7
Wavelet-based functional mixed models.基于小波的功能混合模型。
J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199. doi: 10.1111/j.1467-9868.2006.00539.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验