Suppr超能文献

肾脏浓缩机制及其丧失的临床后果。

The renal concentrating mechanism and the clinical consequences of its loss.

作者信息

Agaba Emmanuel I, Rohrscheib Mark, Tzamaloukas Antonios H

机构信息

Department of Medicine, Division of Nephrology, Jos University Teaching Hospital, Jos, Plateau State, Nigeria.

出版信息

Niger Med J. 2012 Jul;53(3):109-15. doi: 10.4103/0300-1652.104376.

Abstract

The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions.

摘要

肾脏浓缩机制的完整性通过肾脏对溶质(钠、钾、尿素等)和水的转运机制的解剖学和功能安排以及肾脏浓缩调节激素血管加压素的功能来维持。肾小管上皮细胞膜中水通道蛋白(水通道)的发现阐明了血管加压素的肾脏作用机制。浓缩机制丧失会导致不受控制的多尿,尿渗透压降低,如果患者无法(适当地)摄入大量水分,则会导致高钠血症并产生严重的神经后果。浓缩机制丧失可能是由于垂体后叶血管加压素分泌缺陷(先天性或获得性中枢性尿崩症)或靶器官对血管加压素反应不良(先天性或肾性尿崩症)所致。通过标准化的禁水试验来区分导致低渗性多尿的三种主要状态(中枢性尿崩症、肾性尿崩症和原发性烦渴)。正确诊断对于治疗至关重要,这三种情况的治疗方法有所不同。

相似文献

1
The renal concentrating mechanism and the clinical consequences of its loss.
Niger Med J. 2012 Jul;53(3):109-15. doi: 10.4103/0300-1652.104376.
2
Diabetes insipidus in children: pathophysiology, diagnosis and management.
Paediatr Drugs. 2002;4(12):785-96. doi: 10.2165/00128072-200204120-00003.
4
V2R mutations and nephrogenic diabetes insipidus.
Prog Mol Biol Transl Sci. 2009;89:15-29. doi: 10.1016/S1877-1173(09)89002-9. Epub 2009 Oct 7.
6
Acquired forms of central diabetes insipidus: Mechanisms of disease.
Best Pract Res Clin Endocrinol Metab. 2020 Sep;34(5):101449. doi: 10.1016/j.beem.2020.101449. Epub 2020 Jul 10.
7
Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus.
Clin Exp Nephrol. 2018 Jun;22(3):501-507. doi: 10.1007/s10157-018-1544-8. Epub 2018 Feb 24.
8
Water transport in the kidney and nephrogenic diabetes insipidus.
J Vet Intern Med. 2002 Sep-Oct;16(5):510-7. doi: 10.1892/0891-6640(2002)016<0510:wtitka>2.3.co;2.

引用本文的文献

1
High water turnover, hydration status, and heat stress among Daasanach pastoralists in a hot, semi-arid climate.
Evol Med Public Health. 2025 Jul 18;13(1):215-228. doi: 10.1093/emph/eoaf017. eCollection 2025.
2
Total daily energy expenditure and elevated water turnover in a small-scale semi-nomadic pastoralist society from Northern Kenya.
Ann Hum Biol. 2024 Feb;51(1):2310724. doi: 10.1080/03014460.2024.2310724. Epub 2024 Mar 4.
3
Drinking water salinity is associated with hypertension and hyperdilute urine among Daasanach pastoralists in Northern Kenya.
Sci Total Environ. 2021 May 20;770:144667. doi: 10.1016/j.scitotenv.2020.144667. Epub 2021 Jan 20.
4
Age-related changes in urinary protein excretion in relation to indices of renal function in Wistar rats.
Animal Model Exp Med. 2018 Nov 14;1(4):295-304. doi: 10.1002/ame2.12035. eCollection 2018 Dec.
5
Hypertonicity: Clinical entities, manifestations and treatment.
World J Nephrol. 2017 Jan 6;6(1):1-13. doi: 10.5527/wjn.v6.i1.1.
6
The McGill Geriatric Lithium-Induced Diabetes Insipidus Clinical Study (McGLIDICS).
Can J Psychiatry. 2014 Jun;59(6):327-34. doi: 10.1177/070674371405900606.

本文引用的文献

1
Hyponatremia treatment guidelines 2007: expert panel recommendations.
Am J Med. 2007 Nov;120(11 Suppl 1):S1-21. doi: 10.1016/j.amjmed.2007.09.001.
2
HEREDITARY IDIOPATHIC DIABETES INSIPIDUS. A CASE REPORT WITH AUTOPSY FINDINGS.
Ann Intern Med. 1965 Sep;63:503-8. doi: 10.7326/0003-4819-63-3-503.
3
MASSIVE POLYURIA AND NATRURESIS FOLLOWING RELIEF OF URINARY TRACT OBSTRUCTION.
Am J Med. 1964 Aug;37:320-6. doi: 10.1016/0002-9343(64)90015-4.
4
EFFECT OF URETERAL BLOCKADE ON RENAL BLOOD FLOW AND URINARY CONCENTRATING ABILITY.
Am J Physiol. 1963 Aug;205:286-92. doi: 10.1152/ajplegacy.1963.205.2.286.
5
Hyposthenuria in sickle cell anemia: a reversible renal defect.
J Clin Invest. 1956 Sep;35(9):998-1007. doi: 10.1172/JCI103360.
6
Defective urinary concentrating ability due to a complete deficiency of aquaporin-1.
N Engl J Med. 2001 Jul 19;345(3):175-9. doi: 10.1056/NEJM200107193450304.
7
Water: normal balance, hyponatremia, and hypernatremia.
Ren Fail. 2000 Nov;22(6):711-35. doi: 10.1081/jdi-100101958.
8
Homer W. Smith award lecture. Aquaporin water channels in kidney.
J Am Soc Nephrol. 2000 Apr;11(4):764-777. doi: 10.1681/ASN.V114764.
9
Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus.
J Am Soc Nephrol. 1999 Sep;10(9):1958-64. doi: 10.1681/ASN.V1091958.
10
Physiology and pathophysiology of renal aquaporins.
J Am Soc Nephrol. 1999 Mar;10(3):647-63. doi: 10.1681/ASN.V103647.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验