Centre for Self-assembled Chemical Structures, Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H4A 3B7, Canada.
Langmuir. 2013 Jan 29;29(4):1258-63. doi: 10.1021/la304189n. Epub 2013 Jan 17.
The molecular interactions driving the assembly of gold nanoparticles (AuNPs) in a nematic liquid crystal (LC) are directly detected by nuclear magnetic resonance (NMR) spectroscopy and thermodynamically analyzed. The orientational orders of the selectively deuterated LC matrix and AuNP ligands, each separately followed by variable temperature (2)H NMR as a function of particle concentration, were observed to be strongly correlated. The mechanism of the reversible formation of long-range, quasi-periodic nanoparticle structures is attributed to the coupling of the AuNP ligands to the LC matrix, inducing an isotropic-nematic biphasic state. Experimentally validated thermodynamic modeling shows that, in contrast to colloidal nematics that are dominated by elastic forces, nematic dispersions of nanoparticles self-organize through a subtle balance of entropic forces and excluded volume, interface-mediated mesogen and nanoparticle molecular interactions, and couplings between conserved and nonconserved order parameters. Fine-tuning of these interactions through ligand and mesogen chemistry, together with mesoscale modeling, provides a route for materials innovations by merging structured fluid physics and nanoscience.
通过核磁共振(NMR)光谱直接检测并热力学分析了驱动金纳米粒子(AuNPs)在向列液晶(LC)中组装的分子相互作用。通过随粒子浓度变化的变温(2)H NMR 分别单独跟踪选择性氘化 LC 基质和 AuNP 配体的取向序,观察到它们之间存在强烈的相关性。长程准周期纳米粒子结构可逆形成的机制归因于 AuNP 配体与 LC 基质的耦合,诱导各向同性-向列双相态。实验验证的热力学模型表明,与由弹性力主导的胶体向列相不同,纳米粒子的向列分散体通过熵力和排除体积、界面介导的介晶和纳米粒子分子相互作用以及守恒和非守恒序参量之间的耦合之间的微妙平衡来自组织。通过配体和介晶化学以及介观尺度建模来精细调整这些相互作用,为通过融合结构化流体物理和纳米科学来实现材料创新提供了一条途径。