Suppr超能文献

反胶束中镧系配位的周期性行为。

Periodic behavior of lanthanide coordination within reverse micelles.

机构信息

Chemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA.

出版信息

Chemistry. 2013 Feb 18;19(8):2663-75. doi: 10.1002/chem.201202880. Epub 2013 Jan 7.

Abstract

Trends in lanthanide(III) (Ln(III)) coordination were investigated within nanoconfined solvation environments. Ln(III) ions were incorporated into the cores of reverse micelles (RMs) formed with malonamide amphiphiles in n-heptane by contact with aqueous phases containing nitrate and Ln(III); both insert into pre-organized RM units built up of DMDOHEMA (N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide) that are either relatively large and hydrated or small and dry, depending on whether the organic phase is acidic or neutral, respectively. Structural aspects of the Ln(III) complex formation and the RM morphology were obtained by use of XAS (X-ray absorption spectroscopy) and SAXS (small-angle X-ray scattering). The Ln(III) coordination environments were determined through use of L(3)-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure), which provide metrical insights into the chemistry across the period. Hydration numbers for the Eu species were measured using TRLIFS (time-resolved laser-induced fluorescence spectroscopy). The picture that emerges from a system-wide perspective of the Ln-O interatomic distances and number of coordinating oxygen atoms for the extracted complexes of Ln(III) in the first half of the series (i.e., Nd, Eu) is that they are different from those in the second half of the series (i.e., Tb, Yb): the number of coordinating oxygen atoms decrease from 9O for early lanthanides to 8O for the late ones--a trend that is consistent with the effect of the lanthanide contraction. The environment within the RM, altered by either the presence or absence of acid, also had a pronounced influence on the nitrate coordination mode; for example, the larger, more hydrated, acidic RM core favors monodentate coordination, whereas the small, dry, neutral core favors bidentate coordination to Ln(III). These findings show that the coordination chemistry of lanthanides within nanoconfined environments is neither equivalent to the solid nor bulk solution behaviors. Herein we address atomic- and mesoscale phenomena in the under-explored field of lanthanide coordination and periodic behavior within RMs, providing a consilience of fundamental insights into the chemistry of growing importance in technologies as diverse as nanosynthesis and separations science.

摘要

研究了镧系元素(III)(Ln(III))在纳米受限溶剂环境中的配位趋势。Ln(III)离子通过与含有硝酸盐和 Ln(III)的水相接触,掺入由马来酰胺两亲物在正庚烷中形成的反胶束(RM)的核心中;两者都插入由 DMDOHEMA(N,N'-二甲基-N,N'-二辛基己基乙氧基马来酰胺)预先组织的 RM 单元中,这些单元要么相对较大且水合,要么较小且干燥,具体取决于有机相是酸性还是中性。使用 XAS(X 射线吸收光谱)和 SAXS(小角 X 射线散射)获得了 Ln(III)配合物形成和 RM 形态的结构方面的信息。通过使用 L(3)边缘 XANES(X 射线吸收近边结构)和 EXAFS(扩展 X 射线吸收精细结构)确定了 Ln(III)配位环境,这为整个周期的化学提供了度量上的见识。使用 TRLIFS(时间分辨激光诱导荧光光谱)测量 Eu 物种的水合数。从 Ln-O 原子间距离和提取的 Ln(III)配合物中配位氧原子数的系统范围来看,Eu 物种的 picture 是,它们与系列后半部分(即 Tb,Yb)不同:配位氧原子数从早期镧系元素的 9O 减少到晚期镧系元素的 8O——这种趋势与镧系收缩的影响一致。RM 内的环境,无论是存在酸还是不存在酸,都会对硝酸盐配位模式产生明显影响;例如,较大、更水合、酸性的 RM 核有利于单齿配位,而较小、干燥、中性的核有利于双齿配位到 Ln(III)。这些发现表明,镧系元素在纳米受限环境中的配位化学既不等同于固态也不等同于体相溶液行为。在此,我们在反胶束中镧系元素配位和周期性行为这一研究甚少的领域中解决了原子和介观现象问题,为纳米合成和分离科学等各种技术中日益重要的化学提供了基础见解的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验