Motokawa Ryuhei, Kobayashi Tohru, Endo Hitoshi, Mu Junju, Williams Christopher D, Masters Andrew J, Antonio Mark R, Heller William T, Nagao Michihiro
Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
Neutron Science Division, Institute of Materials Structure Science, and Materials and Life Science Division, J-PARC Center, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
ACS Cent Sci. 2019 Jan 23;5(1):85-96. doi: 10.1021/acscentsci.8b00669. Epub 2018 Dec 31.
Short- and long-range correlations between solutes in solvents can influence the macroscopic chemistry and physical properties of solutions in ways that are not fully understood. The class of liquids known as complex (structured) fluids-containing multiscale aggregates resulting from weak self-assembly-are especially important in energy-relevant systems employed for a variety of chemical- and biological-based purification, separation, and catalytic processes. In these, solute (mass) transfer across liquid-liquid (water, oil) phase boundaries is the core function. Oftentimes the operational success of phase transfer chemistry is dependent upon the bulk fluid structures for which a common functional motif and an archetype aggregate is the micelle. In particular, there is an emerging consensus that mass transfer and bulk organic phase behaviors-notably the critical phenomenon of phase splitting-are impacted by the effects of micellar-like aggregates in water-in-oil microemulsions. In this study, we elucidate the microscopic structures and mesoscopic architectures of metal-, water-, and acid-loaded organic phases using a combination of X-ray and neutron experimentation as well as density functional theory and molecular dynamics simulations. The key conclusion is that the transfer of metal ions between an aqueous phase and an organic one involves the formation of small mononuclear clusters typical of metal-ligand coordination chemistry, at one extreme, in the organic phase, and their aggregation to multinuclear primary clusters that self-assemble to form even larger superclusters typical of supramolecular chemistry, at the other. Our metrical results add an orthogonal perspective to the energetics-based view of phase splitting in chemical separations known as the micellar model-founded upon the interpretation of small-angle neutron scattering data-with respect to a more general phase-space (gas-liquid) model of soft matter self-assembly and particle growth. The structure hierarchy observed in the aggregation of our quinary (zirconium nitrate-nitric acid-water-tri--butyl phosphate--octane) system is relevant to understanding solution phase transitions, in general, and the function of engineered fluids with metalloamphiphiles, in particular, for mass transfer applications, such as demixing in separation and synthesis in catalysis science.
溶剂中溶质之间的短程和长程相关性能够以尚未完全被理解的方式影响溶液的宏观化学性质和物理性质。被称为复杂(结构化)流体的液体类别——包含由弱自组装产生的多尺度聚集体——在用于各种基于化学和生物的净化、分离及催化过程的能源相关系统中尤为重要。在这些系统中,溶质(质量)跨液 - 液(水、油)相边界的转移是核心功能。通常,相转移化学的操作成功取决于整体流体结构,其中常见的功能基序和原型聚集体是胶束。特别是,一种新出现的共识是,传质和整体有机相行为——尤其是相分裂的临界现象——会受到油包水微乳液中类胶束聚集体的影响。在本研究中,我们结合X射线和中子实验以及密度泛函理论和分子动力学模拟,阐明了负载金属、水和酸的有机相的微观结构和介观结构。关键结论是,金属离子在水相和有机相之间的转移,一方面涉及在有机相中形成金属 - 配体配位化学中典型的小单核簇,另一方面涉及它们聚集成多核初级簇,这些初级簇自组装形成超分子化学中典型的甚至更大的超簇。我们的测量结果为化学分离中相分裂的基于能量学的观点(称为胶束模型,基于小角中子散射数据的解释)增添了一个正交视角,相对于软物质自组装和颗粒生长的更一般相空间(气 - 液)模型而言。在我们的五元(硝酸锆 - 硝酸 - 水 - 磷酸三丁酯 - 辛烷)体系聚集体中观察到的结构层次,总体上与理解溶液相变相关,尤其与具有金属两亲物的工程流体在传质应用(如分离中的分层和催化科学中的合成)中的功能相关。