Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
Biotechnol Bioeng. 2013 Jun;110(6):1627-36. doi: 10.1002/bit.24835. Epub 2013 Feb 4.
Microalgae have significant potential to be an important alternative energy source, but the challenges to the commercialization of bio-oil from microalgae need to be overcome for the potential to be realized. The application of stress can be used to improve bio-oil yields from algae. Nevertheless, the understanding of stress effects is fragmented due to the lack of a suitable, direct quantitative marker for stress. The lack of understanding seems to have limited the development of stress based strategies to improve bio-oil yields, and hence the commercialization of microalgae-based bio-oil. In this study, we have proposed and used the specific intracellular reactive species levels (siROS) particularly hydroxyl and superoxide radical levels, separately, as direct, quantitative, markers for stress, irrespective of the type of stress induced. Although ROS reactions are extremely rapid, the siROS level can be assumed to be at pseudo-steady state compared to the time scales of metabolism, growth and production, and hence they can be effective stress markers at particular time points. Also, the specific intracellular (si-) hydroxyl and superoxide radical levels are easy to measure through fluorimetry. Interestingly, irrespective of the conditions employed in this study, that is, nutrient excess/limitation or different light wavelengths, the cell concentrations are correlated to the siROS levels in an inverse power law fashion. The composite plots of cell concentration (y) and siROS (x) yielded the correlations of y = k1 · x(-0.7) and y = k2 · x(-0.79) , for si-hydroxyl and si-superoxide radical levels, respectively. The specific intracellular (si-) neutral lipid levels, which determine the bio-oil productivity, are related in a direct power law fashion to the specific hydroxyl radical levels. The composite plot of si-neutral lipid levels (z) and si-hydroxyl radical level (x) yielded a correlation of z = k3 · x(0.65) . More interestingly, a nutrient shift caused a significant change in the sensitivity of neutral lipid accumulation to the si-hydroxyl radical levels.
微藻具有成为重要替代能源的巨大潜力,但为了实现这一潜力,需要克服将微藻生物油商业化的挑战。施加压力可以提高藻类生物油的产量。然而,由于缺乏合适的、直接的压力定量标记物,对压力影响的理解仍然不完整。由于对压力的理解有限,因此基于压力的提高生物油产量的策略的发展受到限制,从而限制了基于微藻的生物油的商业化。在这项研究中,我们提出并使用了特定的细胞内反应性物种水平(siROS),特别是羟基和超氧自由基水平,作为直接的、定量的压力标记物,而不考虑诱导的压力类型。尽管 ROS 反应非常迅速,但与代谢、生长和生产的时间尺度相比,siROS 水平可以假定为处于准稳态,因此它们可以在特定时间点成为有效的压力标记物。此外,特定的细胞内(si-)羟基和超氧自由基水平很容易通过荧光法测量。有趣的是,无论本研究中采用何种条件,即营养过剩/限制或不同的光波,细胞浓度都以反比幂律的方式与 siROS 水平相关。细胞浓度(y)和 siROS(x)的综合图得出了 si-羟基自由基和 si-超氧自由基水平的相关性,分别为 y=k1·x(-0.7)和 y=k2·x(-0.79)。决定生物油生产力的特定细胞内(si-)中性脂质水平与特定的羟基自由基水平以直接幂律的方式相关。si-中性脂质水平(z)和 si-羟基自由基水平(x)的综合图得出了 z=k3·x(0.65)的相关性。更有趣的是,营养物质的转移导致中性脂质积累对 si-羟基自由基水平的敏感性发生了显著变化。