Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
Neurosci Res. 2013 Feb;75(2):83-8. doi: 10.1016/j.neures.2012.12.004. Epub 2013 Jan 5.
In the mammalian cortex, axons are highly ramified and link an enormous number of neurons over large distances. The conventional view assumes that action potentials (APs) are initiated at the axon initial segment in an all-or-none fashion and are then self-propagated orthodromically along axon collaterals without distortion of the AP waveform. By contrast, recent experimental results suggest that the axonal AP waveform can be modified depending on the activation states of the ion channels and receptors on axonal cell membranes. This AP modulation can regulate neurotransmission to postsynaptic neurons. In addition, the latest studies have provided evidence that cortical axons can integrate somatic burst firings and promote activity-dependent ectopic AP generation, which may underlie the oscillogenesis of fast rhythmic network activity. These seminal observations indicate that axons can perform diverse functional operations that extend beyond the prevailing model of axon physiology.
在哺乳动物的大脑皮层中,轴突高度分支,并在长距离内连接大量神经元。传统观点认为,动作电位(AP)以全或无的方式在轴突起始段起始,然后沿轴突侧支进行正向传播,而不会改变 AP 波形。相比之下,最近的实验结果表明,轴突的 AP 波形可以根据轴突细胞膜上的离子通道和受体的激活状态进行修饰。这种 AP 调制可以调节到突触后神经元的神经传递。此外,最新的研究提供了证据表明,皮质轴突可以整合体突发火并促进活性依赖性异位 AP 的产生,这可能是快速节律性网络活动产生的基础。这些开创性的观察结果表明,轴突可以执行超越轴突生理学现有模型的多种功能操作。