Suppr超能文献

RACK1 在神经肽 Y(1-36)和肽 YY(1-36)对 SHR 与 WKY 肾小球前血管平滑肌细胞的增殖作用差异中的作用。

Role of RACK1 in the differential proliferative effects of neuropeptide Y(1-36) and peptide YY(1-36) in SHR vs. WKY preglomerular vascular smooth muscle cells.

机构信息

Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.

出版信息

Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F770-80. doi: 10.1152/ajprenal.00646.2012. Epub 2013 Jan 9.

Abstract

Previous studies show that neuropeptide Y(1-36) (NPY(1-36)) and peptide YY(1-36) (PYY(1-36)), by engaging Y1 receptors, stimulate proliferation of spontaneous hypertensive rat (SHR) preglomerular vascular smooth muscle cells (PGVSMCs). In contrast, these peptides have little effect on proliferation of Wistar-Kyoto (WKY) PGVSMCs. Why SHR and WKY PGVSMCs differ in this regard is unknown. Because receptor for activated C kinase 1 (RACK1) can modulate cell proliferation, we tested the hypothesis that differences in RACK1 levels/localization may explain the differential response of SHR vs. WKY PGVSMCs to NPY(1-36) and PYY(1-36). Western blotting for RACK1 in subcellular fractions of cultured SHR and WKY PGVSMCs demonstrated increased levels of RACK1 in the membrane and cytoskeletal subcellular fractions of SHR vs. WKY PGVSMCs. NPY(1-36) and PYY(1-36) stimulated proliferation of SHR PGVSMCs, and siRNA knockdown of RACK1 abrogated this effect. Neither NPY(1-36) nor PYY(1-36) stimulated the proliferation of WKY PGVSMCs. However, in WKY PGVSMCs treated with a RACK1 plasmid, both NPY(1-36) and PYY(1-36) stimulated proliferation. In SHR PGVSMCs, inhibitors of the G(i)/phospholipase C/PKC pathway (a pathway known to be organized by RACK1) attenuated the ability of NPY(1-36) to stimulate the proliferation of SHR PGVSMCs. Our results suggest that RACK1 modulates the ability of PGVSMCs to respond to the proliferative actions of NPY(1-36) and PYY(1-36)and differences in RACK1 levels/localization account for, in part, differential proliferative responses to NPY(1-36) and PYY(1-36) in SHR vs. WKY PGVSMCs. Because dipeptidyl peptidase IV inhibitors increase NPY(1-36) and PYY(1-36) levels, our findings have implications for the use of such drugs in diabetic patients.

摘要

先前的研究表明,神经肽 Y(1-36)(NPY(1-36))和肽 YY(1-36)(PYY(1-36))通过与 Y1 受体结合,刺激自发性高血压大鼠(SHR)肾小球前血管平滑肌细胞(PGVSMCs)的增殖。相比之下,这些肽对 Wistar-Kyoto(WKY)PGVSMCs 的增殖影响不大。至于 SHR 和 WKY PGVSMCs 在这方面为何存在差异,目前尚不清楚。由于激活的 C 激酶 1 受体(RACK1)可以调节细胞增殖,因此我们提出假设,即 RACK1 水平/定位的差异可能解释了 NPY(1-36)和 PYY(1-36)对 SHR 与 WKY PGVSMCs 反应的差异。对培养的 SHR 和 WKY PGVSMCs 亚细胞部分的 RACK1 进行 Western 印迹分析表明,与 WKY PGVSMCs 相比,SHR 的 RACK1 水平在膜和细胞骨架亚细胞部分增加。NPY(1-36)和 PYY(1-36)刺激 SHR PGVSMCs 的增殖,而 RACK1 的 siRNA 敲低则消除了这种作用。NPY(1-36)和 PYY(1-36)均未刺激 WKY PGVSMCs 的增殖。然而,在接受 RACK1 质粒处理的 WKY PGVSMCs 中,NPY(1-36)和 PYY(1-36)均刺激增殖。在 SHR PGVSMCs 中,G(i)/磷脂酶 C/蛋白激酶 C 途径的抑制剂(该途径已知由 RACK1 组成)减弱了 NPY(1-36)刺激 SHR PGVSMCs 增殖的能力。我们的结果表明,RACK1 调节 PGVSMCs 对 NPY(1-36)和 PYY(1-36)增殖作用的反应能力,RACK1 水平/定位的差异部分解释了 NPY(1-36)和 PYY(1-36)在 SHR 与 WKY PGVSMCs 中的差异增殖反应。由于二肽基肽酶 IV 抑制剂增加了 NPY(1-36)和 PYY(1-36)的水平,我们的发现对糖尿病患者使用此类药物具有重要意义。

相似文献

1
Role of RACK1 in the differential proliferative effects of neuropeptide Y(1-36) and peptide YY(1-36) in SHR vs. WKY preglomerular vascular smooth muscle cells.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F770-80. doi: 10.1152/ajprenal.00646.2012. Epub 2013 Jan 9.
2
RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.
Am J Physiol Renal Physiol. 2017 Apr 1;312(4):F565-F576. doi: 10.1152/ajprenal.00547.2016. Epub 2017 Jan 18.
3
NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4.
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1528-42. doi: 10.1152/ajpheart.00070.2015. Epub 2015 Sep 14.
4
Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells.
Hypertension. 2012 Sep;60(3):757-64. doi: 10.1161/HYPERTENSIONAHA.112.196501. Epub 2012 Jul 16.
6
Receptor for activated protein kinase C1 regulates cell proliferation by modulating calcium signaling.
Hypertension. 2011 Oct;58(4):689-95. doi: 10.1161/HYPERTENSIONAHA.111.174508. Epub 2011 Aug 15.
10
Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.
Clin Exp Pharmacol Physiol. 2008 Jan;35(1):29-34. doi: 10.1111/j.1440-1681.2007.04737.x.

引用本文的文献

1
The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells.
Compr Physiol. 2021 Apr 1;11(2):1831-1869. doi: 10.1002/cphy.c200030.
3
Extracellular Ubiquitin(1-76) and Ubiquitin(1-74) Regulate Cardiac Fibroblast Proliferation.
Hypertension. 2018 Oct;72(4):909-917. doi: 10.1161/HYPERTENSIONAHA.118.11666.
4
The impact of oral anti-diabetic medications on heart failure: lessons learned from preclinical studies.
Heart Fail Rev. 2018 May;23(3):337-346. doi: 10.1007/s10741-018-9690-3.
6
RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.
Am J Physiol Renal Physiol. 2017 Apr 1;312(4):F565-F576. doi: 10.1152/ajprenal.00547.2016. Epub 2017 Jan 18.
7
8
NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4.
Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1528-42. doi: 10.1152/ajpheart.00070.2015. Epub 2015 Sep 14.
9
Accessory proteins for heterotrimeric G-proteins in the kidney.
Front Physiol. 2015 Aug 7;6:219. doi: 10.3389/fphys.2015.00219. eCollection 2015.
10
Is there a role for the incretin system in blood pressure regulation?
Curr Hypertens Rep. 2014 Mar;16(3):417. doi: 10.1007/s11906-013-0417-5.

本文引用的文献

1
Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells.
Hypertension. 2012 Sep;60(3):757-64. doi: 10.1161/HYPERTENSIONAHA.112.196501. Epub 2012 Jul 16.
2
Blood pressure and risk of cancer incidence and mortality in the Metabolic Syndrome and Cancer Project.
Hypertension. 2012 Apr;59(4):802-10. doi: 10.1161/HYPERTENSIONAHA.111.189258. Epub 2012 Feb 21.
3
Active maintenance of nuclear actin by importin 9 supports transcription.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):E544-52. doi: 10.1073/pnas.1118880109. Epub 2012 Feb 9.
4
RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway.
J Biol Chem. 2012 Mar 9;287(11):7845-58. doi: 10.1074/jbc.M111.315416. Epub 2012 Jan 19.
5
The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma.
PLoS One. 2012;7(1):e29622. doi: 10.1371/journal.pone.0029622. Epub 2012 Jan 12.
6
Receptor for activated C kinase 1 (RACK1): a regulator for migration and invasion in oral squamous cell carcinoma cells.
J Cancer Res Clin Oncol. 2012 Apr;138(4):563-71. doi: 10.1007/s00432-011-1097-7. Epub 2011 Dec 30.
7
Receptor for activated protein C kinase 1 (RACK1) is overexpressed in papillary thyroid carcinoma.
Thyroid. 2011 Nov;21(11):1217-25. doi: 10.1089/thy.2010.0186. Epub 2011 Oct 18.
9
Receptor for activated protein kinase C1 regulates cell proliferation by modulating calcium signaling.
Hypertension. 2011 Oct;58(4):689-95. doi: 10.1161/HYPERTENSIONAHA.111.174508. Epub 2011 Aug 15.
10
Renal impairment with sitagliptin: is there a need for active monitoring of potential renal toxicity?
Br J Hosp Med (Lond). 2011 Jul;72(7):412-3. doi: 10.12968/hmed.2011.72.7.412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验