Suppr超能文献

神经元特异性铁缺乏症会在非贫血遗传小鼠模型的海马发育过程中扰乱哺乳动物雷帕霉素靶蛋白信号通路。

Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models.

机构信息

Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA.

出版信息

J Nutr. 2013 Mar;143(3):260-6. doi: 10.3945/jn.112.168617. Epub 2013 Jan 9.

Abstract

Iron deficiency (ID) is the most common nutrient deficiency worldwide, disproportionally affecting infants, children, and women of childbearing age. Although ID commonly occurs with anemia (IDA), nonanemic ID is 3 times more common than IDA in toddlers and also occurs in infants following gestational complications. Both conditions negatively affect motor, socio-emotional, and cognitive behaviors, suggesting that iron, apart from anemia, has a critical role in neurodevelopment. Here, the specific role of iron in regulation of mammalian target of rapamycin (mTOR) signaling (a kinase pathway that integrates metabolic supply and demand to regulate cell growth and morphology) was examined using 2 hippocampal, pyramidal cell-specific, nonanemic, genetic mouse models of ID: a CAMKIIα cre-loxP permanent knockout of divalent metal transporter-1 (DMT-1 CKO) and a CAMKIIα-tTA-driven reversible, overexpression of nonfunctional, dominant negative transferrin receptor-1 (DN TfR-1). In both models, mTOR activity, assessed by phosphorylation levels of key proteins, was upregulated during development by ID [S6K(Thr389) phosphorylation increased 87 and 57% in the DMT-1 CKO and DN TfR-1 models, respectively; P < 0.05]. This effect was shown to be iron-dependent, because iron repletion at postnatal d 21 normalized mTOR activity in the reversible DN TfR-1 model (62% reduction compared with unrepleted mice; P < 0.05). In the permanent DMT-1 CKO model, suppression of ID-induced mTOR hyperactivity by rapamycin administered during the sensitive period for iron improved Morris water maze performance despite ongoing ID (DMT-1 wild-type and DMT-1 CKO mice reached criterion in 3 d compared with 4 d necessary for vehicle-treated DMT-1 CKO mice; P < 0.05). Together, these findings implicate mTOR dysregulation as a cellular mechanism underlying the acute and persistent neurodevelopmental deficits that accompany early-life ID.

摘要

缺铁(ID)是全球最常见的营养缺乏症, disproportionately 影响婴幼儿、儿童和育龄妇女。虽然 ID 常伴有贫血(IDA),但在幼儿中非贫血性 ID 比 IDA 常见 3 倍,也发生在妊娠期并发症后的婴儿中。这两种情况都会对运动、社会情感和认知行为产生负面影响,表明铁除了贫血外,在神经发育中具有关键作用。在这里,使用 2 种海马、锥体细胞特异性、非贫血、基因 ID 小鼠模型,即二价金属转运蛋白-1(DMT-1)CAMKIIα cre-loxP 永久性敲除(DMT-1 CKO)和 CAMKIIα-tTA 驱动的可逆、过表达非功能性、显性负性转铁蛋白受体-1(DN TfR-1),研究了铁在调节哺乳动物雷帕霉素靶蛋白(mTOR)信号传导(一种激酶途径,整合代谢供应和需求以调节细胞生长和形态)中的特定作用。在这两种模型中,通过关键蛋白的磷酸化水平评估 mTOR 活性在发育过程中因 ID 而上调[DMT-1 CKO 模型中 S6K(Thr389)磷酸化增加 87%,DN TfR-1 模型中增加 57%;P<0.05]。该作用被证明是铁依赖性的,因为在可逆转的 DN TfR-1 模型中,出生后第 21 天补充铁可使 mTOR 活性正常化(与未补充的小鼠相比,减少 62%;P<0.05)。在永久性 DMT-1 CKO 模型中,在铁敏感期给予雷帕霉素抑制 ID 诱导的 mTOR 过度活跃,尽管持续存在 ID,但仍能改善 Morris 水迷宫表现(DMT-1 野生型和 DMT-1 CKO 小鼠达到标准的时间为 3 天,而载体处理的 DMT-1 CKO 小鼠需要 4 天;P<0.05)。总之,这些发现表明,mTOR 失调是伴随生命早期 ID 的急性和持续性神经发育缺陷的细胞机制。

相似文献

4
Iron is essential for neuron development and memory function in mouse hippocampus.
J Nutr. 2009 Apr;139(4):672-9. doi: 10.3945/jn.108.096354. Epub 2009 Feb 11.
5
Iron deficiency with or without anemia impairs prepulse inhibition of the startle reflex.
Hippocampus. 2013 Oct;23(10):952-62. doi: 10.1002/hipo.22151. Epub 2013 Jul 8.
6
Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain.
Pediatr Res. 2003 May;53(5):800-7. doi: 10.1203/01.PDR.0000058922.67035.D5. Epub 2003 Mar 5.
7
Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter.
Neurotoxicology. 2006 Jan;27(1):125-30. doi: 10.1016/j.neuro.2005.07.003. Epub 2005 Sep 2.
10
Involvement of mTOR and Regulation by AMPK in Early Iodine Deficiency-Induced Thyroid Microvascular Activation.
Endocrinology. 2016 Jun;157(6):2545-59. doi: 10.1210/en.2015-1911. Epub 2016 Apr 1.

引用本文的文献

1
Dual Impact of Iron Deficiency and Antibiotics on Host Metabolism: A Tissue-Level Analysis.
Metabolites. 2025 Aug 14;15(8):549. doi: 10.3390/metabo15080549.
2
Biomarkers of Brain Dysfunction in Perinatal Iron Deficiency.
Nutrients. 2024 Apr 8;16(7):1092. doi: 10.3390/nu16071092.
3
Role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity in a piglet model.
Sci China Life Sci. 2023 Sep;66(9):2086-2098. doi: 10.1007/s11427-022-2409-0. Epub 2023 Jul 28.
4
Brain Iron Metabolism, Redox Balance and Neurological Diseases.
Antioxidants (Basel). 2023 Jun 16;12(6):1289. doi: 10.3390/antiox12061289.
6
Glial Cell Metabolic Profile Upon Iron Deficiency: Oligodendroglial and Astroglial Casualties of Bioenergetic Adjustments.
Mol Neurobiol. 2023 Apr;60(4):1949-1963. doi: 10.1007/s12035-022-03149-y. Epub 2023 Jan 3.
8
Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape.
Nutrients. 2021 Oct 28;13(11):3857. doi: 10.3390/nu13113857.
9
Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria.
Front Immunol. 2021 May 25;12:674241. doi: 10.3389/fimmu.2021.674241. eCollection 2021.

本文引用的文献

1
AMPK: a nutrient and energy sensor that maintains energy homeostasis.
Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62. doi: 10.1038/nrm3311.
2
Mammalian target of rapamycin and the kidney. I. The signaling pathway.
Am J Physiol Renal Physiol. 2012 Jul 1;303(1):F1-10. doi: 10.1152/ajprenal.00014.2012. Epub 2012 Mar 14.
4
The role of iron in learning and memory.
Adv Nutr. 2011 Mar;2(2):112-21. doi: 10.3945/an.110.000190. Epub 2011 Mar 10.
5
Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus.
Am J Physiol Endocrinol Metab. 2012 Feb 1;302(3):E316-24. doi: 10.1152/ajpendo.00369.2011. Epub 2011 Nov 16.
6
mTOR complex 2 signaling and functions.
Cell Cycle. 2011 Jul 15;10(14):2305-16. doi: 10.4161/cc.10.14.16586.
9
The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1.
Cancer Sci. 2009 May;100(5):970-7. doi: 10.1111/j.1349-7006.2009.01131.x. Epub 2009 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验