Suppr超能文献

PSMD3 上的遗传变异与膳食脂肪和碳水化合物相互作用,调节胰岛素抵抗。

Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance.

机构信息

Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.

出版信息

J Nutr. 2013 Mar;143(3):354-61. doi: 10.3945/jn.112.168401. Epub 2013 Jan 9.

Abstract

PSMD3 encodes subunit 3 of the 26S proteasome, which is involved in regulating insulin signal transduction, and dietary factors could potentially regulate the function of this gene. We aimed to investigate the associations of PSMD3 variants with glucose-related traits and the interactions of those variants with dietary fat and carbohydrate for glucose-related traits in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and to replicate the findings in the Boston Puerto Rican Health Study (BPRHS). Ten single nucleotide polymorphisms (SNPs) were selected, covering 90% the genetic variations in or near PSMD3. Minor allele (C) carriers of rs4065321 had higher homeostasis model assessment of insulin resistance (HOMA-IR) than noncarriers in males of both the GOLDN (P = 0.022) and BPRHS (P = 0.036). Minor allele (T) carriers of rs709592 had significantly higher HOMA-IR (P = 0.032) than C homozygotes in the GOLDN, whereas the T allele carriers of rs709592 tended to have higher HOMA-IR (P = 0.08) than C homozygotes in the BPRHS. In the GOLDN, there was an interaction between rs709592 and dietary carbohydrate on HOMA-IR (P = 0.049). Subjects carrying the T allele of rs709592 had higher HOMA-IR compared only with noncarriers with low carbohydrate intake (≤49.1% energy; P = 0.004). SNPs rs4065321 and rs709592 both significantly interacted with dietary MUFAs and carbohydrate on glucose concentrations in the GOLDN. Our study suggests that PSMD3 variants are associated with insulin resistance in populations of different ancestries and that these relationships may also be modified by dietary factors.

摘要

PSMD3 编码 26S 蛋白酶体的亚基 3,参与调节胰岛素信号转导,饮食因素可能调节该基因的功能。我们旨在研究 PSMD3 变异与葡萄糖相关特征的关联,以及这些变异与饮食脂肪和碳水化合物对遗传学降脂药物和饮食网络 (GOLDN) 研究中葡萄糖相关特征的相互作用,并在波士顿波多黎各健康研究 (BPRHS) 中复制这些发现。选择了 10 个单核苷酸多态性 (SNP),涵盖 PSMD3 内或附近遗传变异的 90%。GOLDN 中男性中 rs4065321 的次要等位基因 (C) 携带者的稳态模型评估胰岛素抵抗 (HOMA-IR) 高于非携带者 (P = 0.022),BPRHS 中的次要等位基因 (T) 携带者的 HOMA-IR 显著高于 C 纯合子 (P = 0.036)。GOLDN 中 rs709592 的 T 等位基因携带者的 HOMA-IR 明显高于 C 纯合子 (P = 0.032),而 BPRHS 中 T 等位基因携带者的 HOMA-IR 倾向于高于 C 纯合子 (P = 0.08)。在 GOLDN 中,rs709592 与饮食碳水化合物对 HOMA-IR 有交互作用 (P = 0.049)。携带 rs709592 的 T 等位基因的受试者与仅携带低碳水化合物摄入 (≤49.1% 能量) 的非携带者相比,HOMA-IR 更高 (P = 0.004)。GOLDN 中,rs4065321 和 rs709592 均与饮食 MUFA 和碳水化合物对葡萄糖浓度有显著的交互作用。我们的研究表明,PSMD3 变异与不同祖裔人群的胰岛素抵抗有关,这些关系也可能受到饮食因素的影响。

相似文献

1
Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance.
J Nutr. 2013 Mar;143(3):354-61. doi: 10.3945/jn.112.168401. Epub 2013 Jan 9.
3
Polyunsaturated Fatty Acids Modulate the Association between PIK3CA-KCNMB3 Genetic Variants and Insulin Resistance.
PLoS One. 2013 Jun 27;8(6):e67394. doi: 10.1371/journal.pone.0067394. Print 2013.
7
Perilipin polymorphism interacts with saturated fat and carbohydrates to modulate insulin resistance.
Nutr Metab Cardiovasc Dis. 2012 May;22(5):449-55. doi: 10.1016/j.numecd.2010.09.003. Epub 2010 Dec 30.

引用本文的文献

1
Association Between Proteasome 26S Subunit, Non-ATPase 3 Methylation and Insulin β Cell Apoptosis in Type 2 Diabetic Mellitus.
Diabetes Metab Syndr Obes. 2025 Sep 3;18:3203-3214. doi: 10.2147/DMSO.S545426. eCollection 2025.
2
Pathway insights and predictive modeling for type 2 diabetes using polygenic risk scores.
Sci Rep. 2025 Aug 7;15(1):28956. doi: 10.1038/s41598-025-13391-8.
4
Development and Verification of the Amino Metabolism-Related and Immune-Associated Prognosis Signature in Gliomas.
Front Oncol. 2021 Nov 5;11:774332. doi: 10.3389/fonc.2021.774332. eCollection 2021.
8
Total and Differential Leukocyte Counts in Relation to Incidence of Diabetes Mellitus: A Prospective Population-Based Cohort Study.
PLoS One. 2016 Feb 18;11(2):e0148963. doi: 10.1371/journal.pone.0148963. eCollection 2016.
9
Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits.
Diabetes Care. 2015 Aug;38(8):1456-66. doi: 10.2337/dc14-2709. Epub 2015 Jun 17.

本文引用的文献

2
A Database of Gene-Environment Interactions Pertaining to Blood Lipid Traits, Cardiovascular Disease and Type 2 Diabetes.
J Data Mining Genomics Proteomics. 2011 Jan 1;2(1). doi: 10.4172/2153-0602.1000106.
3
Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network.
Hum Genet. 2012 Apr;131(4):639-52. doi: 10.1007/s00439-011-1103-9. Epub 2011 Oct 30.
4
Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials.
Clin Nutr. 2011 Dec;30(6):702-7. doi: 10.1016/j.clnu.2011.08.013. Epub 2011 Sep 29.
6
Plasma omega-3 fatty acids and incident diabetes in older adults.
Am J Clin Nutr. 2011 Aug;94(2):527-33. doi: 10.3945/ajcn.111.013334. Epub 2011 May 18.
7
Perilipin polymorphism interacts with saturated fat and carbohydrates to modulate insulin resistance.
Nutr Metab Cardiovasc Dis. 2012 May;22(5):449-55. doi: 10.1016/j.numecd.2010.09.003. Epub 2010 Dec 30.
8
MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol. 2010 Dec;34(8):816-34. doi: 10.1002/gepi.20533.
9
Dietary omega-3 fatty acids and fish consumption and risk of type 2 diabetes.
Am J Clin Nutr. 2011 Jan;93(1):143-50. doi: 10.3945/ajcn.110.005603. Epub 2010 Oct 27.
10
The genetics of insulin resistance: Where's Waldo?
Curr Diab Rep. 2010 Dec;10(6):476-84. doi: 10.1007/s11892-010-0143-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验