Suppr超能文献

基于机器学习和潜在狄利克雷分配方法的整合结构化和非结构化电子健康记录数据预测死亡率。

Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method.

机构信息

Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan.

College of Management, National Taipei University of Technology, Taipei 106, Taiwan.

出版信息

Int J Environ Res Public Health. 2023 Feb 28;20(5):4340. doi: 10.3390/ijerph20054340.

Abstract

An ICU is a critical care unit that provides advanced medical support and continuous monitoring for patients with severe illnesses or injuries. Predicting the mortality rate of ICU patients can not only improve patient outcomes, but also optimize resource allocation. Many studies have attempted to create scoring systems and models that predict the mortality of ICU patients using large amounts of structured clinical data. However, unstructured clinical data recorded during patient admission, such as notes made by physicians, is often overlooked. This study used the MIMIC-III database to predict mortality in ICU patients. In the first part of the study, only eight structured variables were used, including the six basic vital signs, the GCS, and the patient's age at admission. In the second part, unstructured predictor variables were extracted from the initial diagnosis made by physicians when the patients were admitted to the hospital and analyzed using Latent Dirichlet Allocation techniques. The structured and unstructured data were combined using machine learning methods to create a mortality risk prediction model for ICU patients. The results showed that combining structured and unstructured data improved the accuracy of the prediction of clinical outcomes in ICU patients over time. The model achieved an AUROC of 0.88, indicating accurate prediction of patient vital status. Additionally, the model was able to predict patient clinical outcomes over time, successfully identifying important variables. This study demonstrated that a small number of easily collectible structured variables, combined with unstructured data and analyzed using LDA topic modeling, can significantly improve the predictive performance of a mortality risk prediction model for ICU patients. These results suggest that initial clinical observations and diagnoses of ICU patients contain valuable information that can aid ICU medical and nursing staff in making important clinical decisions.

摘要

重症加强护理病房(ICU)是为患有严重疾病或受伤的患者提供高级医疗支持和持续监测的关键护理单位。预测 ICU 患者的死亡率不仅可以改善患者的预后,还可以优化资源分配。许多研究都试图创建评分系统和模型,使用大量结构化临床数据来预测 ICU 患者的死亡率。然而,在患者入院期间记录的非结构化临床数据,例如医生的笔记,往往被忽视。本研究使用 MIMIC-III 数据库来预测 ICU 患者的死亡率。在研究的第一部分,仅使用了八个结构化变量,包括六个基本生命体征、GCS 和患者入院时的年龄。在第二部分,从患者入院时医生做出的初始诊断中提取非结构化预测变量,并使用潜在狄利克雷分配(Latent Dirichlet Allocation)技术进行分析。使用机器学习方法将结构化和非结构化数据相结合,为 ICU 患者创建了死亡率风险预测模型。结果表明,结合结构化和非结构化数据可以提高 ICU 患者临床结局预测的准确性随时间推移。该模型的 AUROC 达到 0.88,表明能够准确预测患者的生命状态。此外,该模型还能够随时间预测患者的临床结局,成功识别重要变量。本研究表明,少量易于收集的结构化变量,结合非结构化数据并使用 LDA 主题建模进行分析,可以显著提高 ICU 患者死亡率风险预测模型的预测性能。这些结果表明,ICU 患者的初始临床观察和诊断包含有价值的信息,可以帮助 ICU 医护人员做出重要的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7d/10001457/dadb42e338e9/ijerph-20-04340-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验